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Drought has a substantial socioeconomic impact under the changing climate. The estimation of population
exposure to drought could be the pivotal signal to predict future water scarcity in the climate hotspot of South
Asia. This study examines the changing population exposure to drought across South Asia using 20 climate
model ensembles from the latest CMIP6 and demographic data under shared socioeconomic pathways (SSPs).
Underpinning the latest version of the IPCC 6th Assessment Report (AR6), this paper focuses on the
2021–2040 (near-term), 2041–2060 (mid-term), and 2081–2100 (long-term) periods to project population
exposure changes relative to the reference period (1995–2014) under four SSP-RCP scenarios. Drought events
are detected by adopting the standardized precipitation evapotranspiration index (SPEI) and run theorymethod.
Model validation suggests that CMIP6-GCM performs well in projecting climate variables and capturing drought
events. The results show that the projected increases in frequent drought events and affected areal coverage are
stronger during the early part of the century and weaker at the end under all scenario combinations. In relative
terms, the projected increase in the number of people exposed to drought is dominant (>1.5-fold) in the near-
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SSPs-RCPs scenario
SPEI
South Asia
term andmid-term periods but decreases in the long-termperiod. Compared to the reference period, the leading
increase in population exposure (2.3-fold) is projected under the newly designed gap scenario (SSP3–7.0) in the
mid-term period. A surprising decline in the number of exposed populations was estimated to be 18.8% under
SSP5–8.5 by the end of the century. The mitigating effect of the predicted heavy precipitation will decrease
droughts in the late future. Spatially, increasing exposure will become more pronounced across India and
Afghanistan. Furthermore, the population change effect is mainly responsible for the exposure changes in
South Asia. However, this study strongly recommends future ‘plausible world’ regional rivalry pathways
(SSP3) scenario-combinations into consideration for policymaking in regard to water management as well as
migration planning over South Asia.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Climate-change-related risks are mostly investigated by functions of
hazards, vulnerability and exposure of the population, economy, soci-
ety, and natural environment (IPCC, 2013). In general, humans ulti-
mately suffer from all hazards. The vulnerability of a population to a
particular hazard can vary due to age, season and geographic region
(Barnett et al., 2010). Human vulnerability can bemeasured by evaluat-
ing exposure, sensitivity of society to hazards, and capacity to combat
(UNISDR, 2009; Field et al., 2012). With changing warming levels, the
climate risks to human safety, health, livelihood, and water availability
are predicted to increase. Adaptation to climate change and associated
risk management emphasis on reducing exposure and vulnerability
(IPCC, 2012).Therefore, the estimation of exposure is recognized as a
fundamental aspect of any disaster loss and risk assessment.

Drought is the most recurring and complicated weather-driven
natural hazard globally (UNISDR, 2009; WMO, 2013). Droughts across
different climate zones are likely to become worse in terms of the
more frequent occurrence of severe drought events. Rising water
demands due to extensive human activities and alterations to hydro-
climatological environments with critical warming levels will trigger
drought impacts. Drought has substantial effects on society, the econ-
omy, and ecosystems in all climate belts (Trenberth et al., 2015; Su
et al., 2018). Droughts rankfirst among all the devastating natural disas-
ters regarding the exposed population (Mishra and Singh, 2010). An in-
creased portion of the population is anticipated to be exposed to water
scarcity due to the rising population and varying climate (Watts et al.,
2015). The International Disaster Database (hattps://www.emdat.be/)
recorded that there were 2.71 × 109 drought-affected persons globally
and 11,731,294 deaths, and the estimated economic losses were
1.745 × 1011 US$ during the historical time frame of 1900–2019. Unfor-
tunately, global drying features and the associated damage are antici-
pated to increase in the future under a changing climate. Drought
frequency, intensity, and duration are likely to escalate in a warming
world with an increase in atmospheric greenhouse gas concentrations
(IPCC, 2013; Chen and Sun, 2015; Donohue et al., 2010; van der
Schrier et al., 2011) stated that. In the socioeconomic structure, the pop-
ulation is highly sensitive to drought, as it directly impacts the water
and food supply (Wilhite et al., 2014). Therefore, it is of great concern
to policymakers how future socioeconomic exposure to drought
would unfold with different warming trajectories, especially at the
regional and local scales. Therefore, it is urgent to determine how
droughts could be provoked, propagate, and affect us in terms of rate,
degree, and location to enhance drought adaptation and mitigation
plans.

South Asia is characterized as a climate-sensitive region. South Asian
countries are recognized to have large populations, where India,
Pakistan, and Bangladesh have been highlighted among the countries
that are extremely vulnerable to a changing climate globally (Global
Climate Risk Index, 2018). The World Bank (2016) reported that ap-
proximately 67% of people across South Asia live in rural areas and
maintain their livelihoods by depending on agriculture. Population
growth and extending economic growth will increase the water
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demands in this region. Over the region, an acute water shortage will
cause GDP losses of 6% by the middle of the century (World Bank,
2016). South Asian countries are extremely vulnerable to different se-
vere climate-change-related events, such as drought, floods, and
heatwaves (Su et al., 2016; Huang et al., 2017). It is expected that heat
waves will further lead to drought, resulting in local food production
and crop failure (Schleussner et al., 2018). Due to severe drought, the
Pakistani agricultural sector recorded 2.6% negative growth in 2002
and reported that ~3.3 million people were exposed drought (Ahmad
et al., 2004). During droughts in 2002 and 2014, a large number of peo-
ple (>300million) in Indiawere exposed (Barthel andNeumayer, 2012;
Mishra et al., 2016). The occurrence of a severe drought event in the
southern part of India led to impacts to >0.2 million people in 2017
(Aadhar andMishra, 2017). Therefore, anticipating the changes in pop-
ulation exposure to drought under different climate change scenarios is
pivotal to unfolding future vulnerability in terms of formulatingmitiga-
tion plans for policymakers.

Drought indices and hydro-meteorological variables are intuitive for
characterizing drought events. In terms of the relative effectiveness of
different indices, the multi-scalar standardized precipitation evapo-
transpiration index (SPEI) developed by Vicente-Serrano et al. (2010)
is widely accepted to quantify extreme dry and wet events under a
warming-induced changing climate. The sensitivity of the SPEI to pre-
cipitation and potential evapotranspiration (PET) demonstrates clear
geographic variation across different climate regions. In general, intense
dryness is detected by the SPEI in tropical and subtropical regions. In
semiarid regions, the SPEI reflects strong dryness in response to PET,
while it shows sensitivity to precipitation (wetness) in humid regions
(Vicente-Serrano et al., 2015). In Ningxia, China (an arid and semiarid
region), the SPEI yields a long average drought duration, high intensity
and frequent drought events due to the low precipitation and high
evaporation in the area (Tan et al., 2015). Furthermore, Irannezhad
et al. (2017) reported that the SPEI is practically effective in deterring
drought across cold regions, where drought during the winter is influ-
enced by precipitation variations but drought during the warm season
is influenced by increased PET.

It is apparent that the global climate model (GCM) outputs from the
Coupled Model Intercomparison Project (CMIP) have been imperative
in assessing future climatic risks (i.e., drought). In this study, we quan-
tified the anticipated changes in the population exposed to drought
using GCM projections from the new sixth phase of the CMIP (CMIP6)
(Eyring et al., 2016) and demographic changes under five new shared
socioeconomic pathways (SSPs). There are almost 30 improved GCM
outputs available in CMIP6 thatwere incorporated by variousmodelling
centres. Different emission scenarios with different forcing trajectories
are designed under the Scenario Model Intercomparison Project
(ScenarioMIP) as the core of the 6th phase. In this latest phase, scenario
combinations are derived from shared socioeconomic pathways (SSPs)
and representative concentration pathways (RCPs). The new scenario
layout that links the RCPs with SSPs (SSPs-RCPs) is derived based on in-
tegrating the future pathway of exposure and vulnerability concepts
under a changing climate. Considering the effects of climate change
and policies, five new shared socioeconomic pathways (SSPs) have

http://www.emdat.be/
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been designed to unfold probable evolutions of future socio-
demographic advancement in the 21st century. The SSPs denote sus-
tainability (SSP1), middle of the road with the historical trend (SSP2),
fragmentation (SSP3), inequality (SSP4), and the growth-oriented
world (SSP5) (O'Neill et al., 2017). In this study, we use 20GCMoutputs
for four SSP-RCP scenarios fromCMIP6 and future demographic changes
under five SSPs to demarcate an inclusive depiction to realize forthcom-
ing changes in population exposure to drought over South Asia.

Overwhelming societal impacts of intense drought have drawn the
utmost attention worldwide. Numerous studies have emphasized the
evolution of prospective changes in drought frequency and magnitude,
whereas negligible effort has been paid to exploring vulnerability
changes. This study aims to analyse the changes in the population ex-
posed to drought in the future, as well as to elucidate the significance
of a changing climate and growing population in exposure changes.
This research focus on analytically measuring the affected population
under anticipated drought conditions across South Asia considering
the influential effects of climate change and population change. In spe-
cific terms, using the upgraded GCM outputs from CMIP6, this study in-
tends to elucidate the following three questions: (i) Towhat degree can
the population be exposed to drought under different SSP-RCP scenar-
ios? (ii) At which time horizon exposure could the peak be reached by
the 21st century? (iii) How do the three targeted causal factors (popu-
lation change effect, climate change effect, and population-climate in-
teraction effect) influence exposure changes? However, as far as the
authors know, this is the first attempt using the latest CMIP6model out-
puts to study future population exposure to drought in South Asia that
considers the entire region. Furthermore, it is believed that the advance-
ment in up-to-date GCMs could provide more realistic and consistent
results across South Asian countries, which can be taken as the funda-
mental basis to induce policy interventions for drought risk mitigation
and adaptation.
Fig. 1. Elevation ma
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2. Datasets and methods

2.1. Study area

This study was conducted in the South Asia region, which is located
at 5°N to 40°N and 60°E to 100°E (Fig. 1). The region encompasses a
large land area of approximately 5.2 million km2. India is recognized
as the largest country in terms of both population and area coverage
among the seven continental countries (Afghanistan, Bangladesh,
Bhutan, India, Nepal, Pakistan, and Sri Lanka) of the SouthAsiandomain.
Furthermore, the dynamic climatology of this region is mostly deter-
mined by complex monsoon systems. Meteorologically, South Asian
countries feature long periods of maximum temperatures, humidity,
and varying precipitation. Based on the Köppen−Geiger climate classi-
fication system, the domain can be characterized as the arid zone in the
west, tropical zone in the east, and temperate zone in the northern part.
In terms of altitude, the northern part is dominated by high elevations
that decrease towards the southern part. The geographical location
and elevation above mean sea level are represented in Fig. 1.

2.2. Datasets

The state-of-the-art CMIP6 framework has evolved to meet the de-
mand of a growing scientific community by improving the drawbacks
in CMIP5 (Eyring et al., 2016). Recently, CMIP6-GCMs have become piv-
otal features in driving climate research across the globe. In this study,
historical and future simulations from the latest CMIP6 archive are ap-
plied to anticipate future drought in South Asia. In this aspect, this
study analysed the following monthly climatological parameters: pre-
cipitation, maximum temperature, minimum temperature, wind
speed, shortwave solar radiation, and surface relative humidity, as
well as surface soil moisture and surface runoff for the periods of
p of South Asia.
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1995–2014 and 2021–2100. Considering the availability of all the afore-
mentioned required variables, this research work selected 20 GCMs
from CMIP6, as presented in Table 1. In the time of writing this paper,
only 20 GCMs made all the required parameters available under four
common SSP-RCP scenarios, namely, SSP1–2.6, SSP2–4.5, SSP3–7.0,
and SSP5–8.5. These four scenarios (maximum) were common among
all 20 selected GCMs that contained all the required variables. The se-
lected SSP-RCPs are regarded as combinations of low societal vulnera-
bility with a low emission level (SSP1–2.6), intermediate societal
vulnerability with an intermediate emission range (SSP2–4.5), compar-
atively high societal vulnerability with a medium to high forcing range
(SSP3–7.0), and SSP5–8.5 is considered higher emissions that impose
highmitigation but low adaptation challenges (O'Neill et al., 2016). Fur-
thermore, analysis in this study demonstrates that the selected GCMs
still have uncertainties in simulating climate variables across South
Asian countries. Therefore, to secure high resolution and reduce biases,
we applied thewidely recognized spatial disaggregation (SD) technique
to downscale all the variables to a common horizontal grid at 0.5° × 0.5°
resolution. Moreover, to proceed with further analysis with reduced
biases, the Equidistant Cumulative Distribution Functions (EDCDF)
method was used to perform bias correction against observed data. In
this study, the detailed process of downscaling and bias correction
was adopted by following Su et al. (2018).

Finally, to evaluate the representation of GCMs in capturing the
South Asian climate, this work used reanalysis climate data for the pe-
riod of 1995–2014. All the required parameters (monthly precipitation,
maximum temperature, minimum temperature, wind speed, short-
wave solar radiation, and surface relative humidity) were downloaded
from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)
website. The ERA-Interim reanalysis data based on the WATCH Forcing
Data methodology are known as the WFDEI. The ISIMIP makes these
outputs available under the title of WFDEI and ERA-Interim data
Merged and Bias-corrected for ISI-MIP (EWEMBI). These reanalysis
Table 1
Summary of the temporal and spatial resolution of the datasets used in the study.

Climate models from CMIP6

Model name Institution with country

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization- Austr
System Science (CSRO-ARCCSS), Australia

ACCESS-ESM1–5 Commonwealth Scientific and Industrial Research Organization (ARCC
AWI-CM-1–1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Rese
CanESM5 Canadian Centre for Climate Modelling and Analysis, Environment and
CanESM5-CanOE Canadian Centre for Climate Modelling and Analysis, Environment and
CESM2 National Center for Atmospheric Research (NCAR),USA
CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Ital
CNRM-CM6–1 Centre National de Recherches Meteorologiques- Centre Europeen de

(CNRM-CERFACS), France
CNRM-ESM2–1 Centre National de Recherches Meteorologiques- Centre Europeen de

(CNRM-CERFACS), France
FGOALS-g3 Chinese Academy of Sciences (CAS), China
GISS-E2–1-G Goddard Institute for Space Studies (NASA-GISS), USA
INM-CM4–8 Institute for Numerical Mathematics, Russian Academy of Science, Rus
INM-CM5–0 Institute for Numerical Mathematics, Russian Academy of Science, Rus
IPSL-CM6A-LR Institut Pierre Simon Laplace, France
MIROC6 Japan Agency for Marine-Earth Science and Technology, Japan
MIROC-ES2L Japan Agency for Marine-Earth Science and Technology, Japan
MPI-ESM1–2-HR Deutsches Klimarechenzentrum, Germany
MPI-ESM1–2-LR Max Planck Institute for Meteorology, Germany
MRI-ESM2–0 Meteorological Research Institute, Japan
UKESM1–0-LL Met Office Hadley Centre, UK

Population data

Data types Organization/Institution

Recorded population (temporal) World bank
Gridded population of the World (GPWv4) NASA's Earth Observing Sys
Shared Socioeconomic Pathways (SSPs) based projection Inter-Sectoral Impact Mode
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climate parameters are further used to calculate potential evapotranspi-
ration (PET). All the datasets are reprojected at 0.5° × 0.5° resolution.

The latest CMIP6 designed simulation period (historical) is
1850–2014 and projection period (future) 2015–2100. Tokarska et al.
(2020) reported that the period 1995–2014 is supposed to be the base
period in the IPCC sixth assessment report (AR6), since it's more consis-
tent to AR5 base period in some extent. So, to expedite a better relative
and statistical analysis for future periods considering IPCC forthcoming
report, the historical simulation period 1995–2014 is selected as the
‘reference period’ in this paper. In addition, the periods of 2021–2040,
2041–2060, and 2081–2100 denote ‘near-term’, ‘mid-term’, and ‘long-
term’ periods, respectively, which also underpin the IPCC AR6.

The country-level population data of South Asia for the 1995–2014
period were obtained from the World Bank. Future demographic
changes under five SSPs for the period 2010–2100 were obtained from
the ISI-MIP website. Among the five SSPs, SSP1, SSP2, and SSP3 accord-
ingly signify low, intermediate, and high societal vulnerability, whereas
SSP4 and SSP5 represent challenges in adaptation and mitigation
(O'Neill et al., 2017). In this study, the spatial distribution of the popula-
tion in 2015 over South Asia was downloaded from theGPWv4website.
The original resolution (30 arc sec) of the GPWv4 data was reprojected
to 0.5° × 0.5° as a common resolution format. Notably, the population
distribution under SSPs for the 2010–2100 period were deduced based
on the gridded proportion of the population in 2015. The projection of
the population distribution for 2010–2100 based on the spatial distribu-
tion of the 2015 population yields some uncertainties. Spatial bias may
arise, which manifests an overestimation of the population in
low-density areas and an underestimation of the spatial extent of the
population in high-density areas. Projectionsmay be presented in unin-
hibited areas such as pure cropland, forest, desert or pasture types. Key
assumptions such as those regarding fertility,mortality, growth rate, ur-
banization level, internal or internationalmigration and others could af-
fect the population over some areas. Furthermore, this projection does
Temporal
resolution

Spatial
resolution
(°)

alian Research Council Centre of Excellence for Climate 1 month 1.2 × 1.8

SS), Australia 1.2 × 1.8
arch, Germany’ 0.9 × 0.9
Climate Change, Canada 2.8 × 2.8
Climate Change, Canada 2.8 × 2.8

0.9 × 1.3
y 1.0 × 1.0
Recherche et de Formation Avancee en Calcul Scientifique 1.4 × 1.4

Recherche et de Formation Avancee en Calcul Scientifique 1.4 × 1.4

2.3 × 2.0
2.0 × 2.5

sia 1.5 × 2.0
sia 1.5 × 2.0

1.3 × 2.5
1.4 × 1.4
2.7 × 2.8
~0.9
~2.0
1.1 × 2.1
1.3 × 1.9

Temporal resolution Spatial resolution (°)

1 year –
tem Data and Information System 30 arc sec
l Intercomparison Project 0.5 × 0.5
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not consider the impact of climate change on the population distribu-
tion, as climate change influences population growth (Cao et al., 2012;
Jiang et al., 2017; Wang et al., 2017; Jiang et al., 2018a, 2018b; Jiang
et al., 2020b; Jing et al., 2020). Such uncertainties can be minimized
using growth rates in future decades from the Revision of World Popu-
lation Prospects (RWPP, United Nations, 2017a, b). This process pro-
vides a high-medium-low growth rate at each country level in each
five-year increment. Furthermore, the revision of world urbanization
prospects (RWUP, UN, 2018) used a sensitivity analysis using different
growth rates from urban and rural areas to examine the possible move-
ment between urban and rural areas. The consideration of different
growth rates from RWPP and RWUP in population projections in
China shows reduced uncertainties (Zhang et al., 2020). In addition,
Jones andO'Neill (2016) used a parameterized gravity-based downscal-
ing model to reduce the uncertainties in the United States population
projection, which considers country-level or state-level growth rate,
fertility, mortality, internal in-migration, internal out-migration, and in-
ternational migration data from the US Census.

The temporal trend of the population recorded in 1995–2014 and
projected in 2015–2100 and the spatial distribution of the population
patterns in 2015 are shown in Fig. 2. The population in 2015 was ap-
proximately 1713million in South Asia. Population changes are inclined
to increase continuously under only the SSP3 scenario, whereas declines
are observed for all other scenarios after a mid-century peak (Fig. 2a).
Multi-year averaged population in 2021–2040 will be approximately
1750, 1843, 1947, 1817, and 1742 million under SSP1–5, respectively.
In the period from 2041 to 2060, the population is projected to be
1869, 2109, 2429, 2033, and 1851 million, whereas the population will
be 1564, 2108, 3180, 1942, and 1536 million in the long term
(2081–2100). Projected population growth is higher in the mid-term
period under all SSP scenarios than in the two other periods. The
projected population in South Asia is subjective to be the greatest
under the plausible world of fragmentation (SSP3), imposing high soci-
etal vulnerability. However, discerning the spatial structure of the pop-
ulation, the population distribution was comparatively low in the
western part but high in the northern and southern parts of South
Asia. The population density was >400 per km2, mostly across the
Indo-Gangetic Plain, including major populous cities, namely, Mumbai,
Delhi, Bangalore, Hyderabad, and Ahmedabad of India; Karachi, Lahore,
and Faisalabad of Pakistan; Colombo of Sri Lanka and all of Bangladesh.

2.3. Methods

2.3.1. Drought metric
It is suggested that PET-based drought indices such as the SPEI are

preferable for measuring future droughts. Drought index performance
evaluation-based studies have recommended that the SPEI is the best-
Fig. 2. (a) Recorded population for the 1995–2014 period and projected population for the
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suited index for assessing drought across South Asian countries
(Gupta and Jain, 2018; Adnan et al., 2018). In this paper, drought is scru-
tinized by using the standardized precipitation evapotranspiration
index (SPEI). The supply-demand function of the water balance theory
is the core aspect of the SPEI. The 12-month scale for the SPEI is recog-
nized as a vigorous representation of drought dynamics (Chen and
Sun, 2015). The SPEI values increased with timescales, and droughts
mostly responded to the SPEI with long timescales (Vicente-Serrano
et al., 2012). Although SPEI-12 is mostly used to detect hydrological
droughts, it also detects long-term meteorological drought. Long-term
trends and inter-annual variations in droughts are well captured by
the SPEI at the 12-month scale (Chen et al., 2018). The SPEI-12 month
time scale is able to reflect both surface runoff and soil moisture deficit.
Long-term droughts signify that both ground and surface water levels
fall, resulting in substantial effects on socio-economic advancement.
Here, we deduced the SPEI with a 12-month time scale in reflecting
droughts across South Asia. The basic equation of the SPEI calculation
is as follows:

D ¼ P−PET ð1Þ

The water surplus or deficit over a climatic zone is reflected by the
difference (D) between precipitation (P) and potential evapotranspira-
tion (PET). Thewater balance of P-PET usually fits the log-logistic distri-
bution. Since PET is the core input of the SPEI, the PET calculation
process has an influential role in SPEI-based drought characterization.
Biases in PET estimation trigger an overestimation of the drying trend
(Sheffield et al., 2012). Among the different methods of PET calculation,
the Food and Agriculture Organization (FAO) recommended that the
Penman-Monteithmethod is awidely acceptedmethod under changing
climate conditions (Dai, 2011; Sheffield et al., 2012; Trenberth et al.,
2014; Zhou et al., 2020). The Penman-Monteith equation followed by
Allen et al. (1998) is as follows:

PET ¼ 0:408Δ Rn−Gð Þ þ γ 900
Tþ273U2 ea−edð Þ

Δþ γ 1þ 0:34u2ð Þ ð2Þ

where Δ is the slope of the saturation vapor pressure curve; T is the
mean daily air temperature; ea is the saturation vapor pressure; Rn is
the net radiation at the surface; ed is the actual atmosphericwater vapor
pressure; G is the all wave ground heat flux; γ is the psychometric con-
stant; and u2 is the daily average wind speed at 2 m height.

The reference period-driven log-logistic distribution coefficients are
employed as the basis to estimate the drought index for the future pe-
riod. The detailed SPEI calculation process is as Vicente-Serrano et al.
(2010) suggested. In this work, dryness is diagnosed based on SPEI
≤−1. The lower the SPEI value is, themore severe thedrought condition.
2015–2100 period. (b) Spatial pattern of the population density in South Asia in 2015.
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Table S1 in the supplementarymaterials describes the different levels of
different drought conditions.

2.3.2. Drought identification
The spatial-temporal drought characteristics for each grid are inves-

tigated based on the broadly used run theory method proposed by
Yevjevich (1969). Following run theory, the condition with continuous
SPEI values ≤−1 for at least three consecutivemonths is considered one
drought event in this paper. Next, drought frequency (DF) was
measured as the number of drought occurrences per year. Similarly,
drought area (DA) was estimated as the highest portion (number) of
grids under dryness conditions for a period of time, which can be docu-
mented as a proportion (%) of the entire grid numbers across the
selected region. The detailed calculation process can be found in the
study of Guo et al. (2018).

2.3.3. Estimation of the exposed population
According to the United Nations International Strategy for Disaster

Reduction (UNISDR, 2017), population exposure to drought is defined
as the number of people in a drought-prone area. Population exposure
can be measured by multiplying the anticipated drought frequency by
the number of people under drought conditions (Jones et al., 2015;
UNISDR, 2017). This research combined the projected population
under five SSPs with the corresponding SSP-RCP climate change scenar-
ios: SSP1 with SSP1–2.6; SSP2 with SSP2–4.5; SSP3 with SSP3–7.0; and
SSP5 combined with the SSP5–8.5 scenario.

2.3.4. Causal factors in exposure change
Jones et al. (2015) stated that the changes in population expo-

sure are mostly influenced by three factors: population factors
(i.e., population change with time), climatic factors (e.g., drought
frequency change with time), and population-climate interaction
factors (e.g., both population and climate change with time). The
decomposition for changes in population exposure is calculated by
using the following equation:

△D ¼ Xj � Yj−Xi � Yi ¼ Xi �△Yþ△X� Yi þ△X�△Y ð3Þ

where △D=total change in exposure; Xi = population level in pe-
riod i; Yi = drought frequency in period i; Xj = population level in
Fig. 3. Taylor diagrams of the simulated (a) precipitation and (b) potential evapotranspiration b
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period j; Yj = drought frequency in period j;△X=population change
from time period i to j;△Y= changes in drought frequency from period
i to j; Yi+△X = population change effect; Xi×△Y=climate change
effect; and △X×△Y = population-climate interaction. Then, the indi-
vidual contribution of each factor is computed based on:

CFRpop ¼ Yi þ△X
Xi �△Yþ△X� Yi þ△X�△Y

� 100% ð4Þ

CFRcli ¼
Xi �△Y

Xi �△Yþ△X� Yi þ△X�△Y
� 100% ð5Þ

CFRpop−cli ¼
△X�△Y

Xi �△Yþ△X� Yi þ△X�△Y
� 100% ð6Þ

where CFRpop represents the contribution rate of the population change
effect; CFRcli represents the contribution rate of the climate change ef-
fect; and CFRpop−cli represents the contribution rate of the population-
climate interaction effect.

3. Results

3.1. Model performance evaluation

It has been recognized that the evaluation of GCM capability in re-
producing climatological variables provides a confident basis for future
climate projections. In this study, the performances of 20 individual
GCMs as well as their ensemble medians were evaluated considering
the performances both before bias correction and after bias correction.
The SPEI is regarded as the standardization of the difference between
precipitation and PET. Therefore, GCM capabilities are appraised against
ISIMIP observation data in terms of simulating precipitation and poten-
tial evapotranspiration (PET) across South Asia during the reference pe-
riod (1995–2014).

Taylor analysis is broadly recognized to evaluate the performance of
GCMs against reference data. In this study, the Taylor diagram was used
to distinguish well-simulated GCMs in reproducing precipitation and
PET over South Asia for further analysis. The results for precipitation are
presented in Fig. 3a. The figure shows that before bias correction, most
of the models had standardized deviations (SDs) varying from 0.6 to
1.2, while all the individual models after bias correction represented
y 20 GCMs across South Asia for the period of 1995–2014with ISIMIP as the observed data.
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concentrated patterns laying closer to the standard deviation line of the
observed data. Furthermore, correlation coefficients (CC) between the
20 GCMs and observed data ranged from 0.4 to 0.7 (before bias correc-
tion) with root mean square deviation (RMSD) ranging from 0.7 to 0.9,
whereas after bias correction, CC reached ±0.8 and reduced the RMSD
value by ~0.4. Furthermore, all the individual models and ensemble me-
dians exhibited an improved capability in reproducing PET (Fig. 3b)
over South Asiawhen compared to precipitation.Most of themodels (be-
fore bias correction) simulated PET with a large SD relative to the obser-
vations (extent from 0.8 to 1.4) and an improved CC (0.8 to 0.9),
whereas after bias correction, most of the models were simulated with
a SD that was almost similar to that observed, with a concrete CC
(≥0.95) and low RMSD. The multi-model ensemble (MME) median
(both before bias correction and after bias correction) showed a stronger
capability in simulating both precipitation and PET than the individual
model, ensuring a high CC and low RMSD and standardized deviation
near the observed data. Surprisingly, the ensemble median for precipita-
tion simulation delineated small deviations in magnitude, which implies
thatGCMshave systematically underestimatedprecipitationdistributions
in South Asia. The bias-corrected individual GCMs and their ensemble
medians provide better performance than before bias correction.

3.2. Anticipated changes in key climate variables

Generally, drought events are enhanced by rainfall deficits and contin-
uous temperature increases as well as increasing evaporative demand.
Future annual mean precipitation and PET changes under the SSP-RCP
scenarios during the reference period (1995–2014) and projected period
Fig. 4. Anticipated changes in precipitation and potential evapotranspiration for the 1995–201
vertical dotted lines indicate different defined periods; solid-coloured lines are the MME med
and upper limits of the GCMs, respectively.
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(2015–2100) indicating three defined periods, near-term period
(2021–2040), mid-term period (2041–2060), and long-term period
(2081–2100), are presented in Fig. 4. Overall, both the precipitation
(Fig. 4a) and PET (Fig. 4b) show an increasing tendency under all the
SSP-RCP scenarios across South Asia in the long-term period. The varia-
tions in terms of increases among scenarios are significant towards the
long-term period. In the 2021–2040 period, the highest relative increases
in precipitation and PET (relative to the reference period) are estimated to
be ~4% and 1.9%, respectively, under SSP1–2.6. The lowest precipitation
will be under SSP2–4.5 (0.1%). Furthermore, in relative terms, both the
precipitation and PET are projected to increase under all scenarios during
themid-term period aswell as the long-term period. In themid-term pe-
riod, the highest increases in annual precipitation and PET will be 6.3%
and 4.2%, respectively, under SSP5–8.5, whereas the lowest precipitation
(3.6%) is estimated to increase under SSP3–7.0. Likewise, in the long
term, the greatest increases in annual precipitation and PET will be
23.1% and 10.8%, respectively, under SSP5–8.5, where the lowest rainfall
is estimated under the lowest emission scenario SSP1–2.6. However, the
changes in precipitation and PET are weaker in the 2021–2040 period
and stronger in the 2081–2100 period for all scenarios.

3.3. Projected changes in SPEI, soil moisture and runoff

The included soil moisture and runoff variables in this study taken
directly from similar models (20 GCMs) with the SPEI calculation. The
SPEI has been compared with soil moisture and runoff diagnostics to
demonstrate that the SPEI calculations here accurately reflect the
drought responses within these coupled models. The geographical
4 period and future period (2015–2100) under four SSP-RCP scenarios across South Asia:
ian value, and shaded colours signify the 25th percentile and 75th percentile as the lower
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structures of the future changes in surface soil moisture content, surface
runoff, and SPEI for the long-term period are presented in Fig. 5. As sig-
nificant changes and large variations in climatological parameters over
South Asia exist in the long-term period (Fig. 4), the study analysed
soil moisture and runoff for this period to demonstrate that the SPEI in
this study accurately reflects the drought responses within the same
GCMs. The figures illustrate decreases in soil moisture (Fig. 5A) and run-
off (Fig. 5B) across thewestern part mostly in Afghanistan aswell as the
northern part (Nepal, Bhutan, and Bangladesh) under all scenario com-
binations. Notably, the magnitude of decreasing soil moisture and run-
off are projected to become stronger over the western part from the
low emissions scenario (SSP1–2.6) to the high emissions scenario
(SSP5–8.5). Simultaneously, the increases in both soilmoisture and run-
off became pronounced in terms of magnitude and spatial extent over
the eastern part of South Asia (India, Sri Lanka, and part of Pakistan)
with increasing emission levels. However, the drying tendency in the
soil moisture and runoff fields was largely captured by the SPEI
(Fig. 5C) calculated using the same GCM climatological variables. In ac-
cordance with Fig. 5A, B, and C, it is obvious that dryness will be prom-
inent in western South Asia under all emission scenarios. Though the
Fig. 5. Projected changes in surface soil moisture, surface runoff, and SPEI under four SSP-RCP sc
and (B) surface runoff epitomize the percentage of changes during the long-term period (2
2081–2100 estimated using the multi-model median value.
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soil moisture and runoff present consistency with SPEI here, results
may be associated with some unavoidable uncertainties. The soil mois-
ture and runoff data are not bias-corrected, which may exert inter-
annual, seasonal and long-term trends. The relative changes are
estimated for only the long-term period, so spatial discern in the near-
tern and mid-term remain unclear. Furthermore, some individual
models may have large overestimations or underestimations in some
areas, which are not considered. However, although the multi-model
ensemble method are used to reduce uncertainties, some uncertainties
may remain for extreme values. However, the demonstrated spatial
patterns of dryness andwetness trends (in Fig. 5A, B and C) are strongly
consistent with the findings across South Asia reported by Zhai et al.
(2020).

3.4. Drought frequency and area changes

The drought frequencies under the four SSP-RCP scenarios are pre-
sented in Fig. 6 for the target periods. During the 1995–2014 period,
the drought frequency per year was 4.9 times across South Asia. For
the future, the highest drought frequencies are projected to be 8.1
enarios across South Asia for the long-term period (2081–2100); (A) surface soil moisture
081–2100) relative to the 1995–2014 period, and (C) SPEI-12 denotes the average over



Fig. 6.Drought frequency for the reference period (1995–2014) and three future periods (2021–2040, 2041–2060, and 2081–2100) under four SSP-RCP scenarios in South Asia, where the
coloured filled circles represent theMMEmedian value, and the lower and upper limits of the green straight lines signify the 25th percentile and 75th percentile of the GCMs, respectively.
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(SSP5–8.5), 6.6 (SSP2–4.5), and 6.1 (SSP1–2.6) times per year for the
2021–2040, 2041–2060, and 2081–2100 periods, respectively (Fig. 4).
In the 2021–2040 period, the projected drought frequency increases
from the lower forcing (SSP1–2.6) to higher forcing scenarios
(SSP5–8.5). With regard to the reference period, the drought frequency
in the near-term period will increase by 32.3%, 43.8%, 58.7%, and 63.2%
for SSP1–2.6 to SSP5–8.5, respectively. During the mid-term period,
the highest increase in drought frequency was 32.1% under SSP2–4.5.
In the 2081–2100 period, the frequency significantly increases by
22.3% under SSP1–2.6. In summary, drought events in South Asia will
becomemore frequent in the near future andwill substantially decrease
over long-term periods. Notably, more frequent drought events are an-
ticipated with the higher forcing scenarios in the near-term period,
while drought frequency in the long-term period will increase under
lower emission scenarios.

The horizontal pattern of frequent drought events (DF) in the refer-
ence period (1995–2014) and relative changes for the three defined
time horizons across South Asia are shown in Fig. 7. In the 20 years of
the past period (1995–2014), South Asia faced substantial drought
events 5 times per year, which occurred mostly over India (central,
western, and north-eastern parts) as well as Bangladesh, part of
Nepal, Bhutan, and Afghanistan (Fig. 7a). Moreover, drought frequen-
cies ≥6 times were pronounced in western South Asia (mostly
Pakistan and extended to Afghanistan), and drought events of more
than 6 times per year were striking across the south-eastern warm
humid region of India and Sri Lanka. A pronounced pattern of drought
frequency is exhibited in the near-term period (Fig. 7b, e, h, k). With re-
gard to the reference period, drought events in the near-term period are
projected to become 60% higher over almost all of South Asia. Drought
events will be aggravated to more than 60% higher than the reference
period across the eastern state of India, central and western India, and
part of Bangladesh and Nepal under all scenarios. However, in the
mid-term period (Fig. 7c, f, i, h), drought frequency will increase by
60%, mostly in central and western India, the eastern state of India,
and part of Pakistan and Afghanistan. In this period, drought events
tend to decrease across the south-eastern warm humid region of India
and northern Pakistan. Surprisingly, a pronounced decreasing (70%)
pattern is projected in the long-term period (Fig. 7d, g, j, l) under all sce-
narios. In this period, drought frequency will decrease mostly in the
eastern part, while increased DF is distributed in the western part
9

(mostly Pakistan and Afghanistan) under all scenario combinations. In
the long-term period, the dominant decreasing pattern in DF is exhib-
ited across the central and eastern parts of South Asia (India, Sri
Lanka, Nepal, Bhutan, and Bangladesh) under SSP5–8.5 and SSP3–7.0.
In conclusion, drought is projected to become weaker in the long-term
period. A strong spatial pattern of DF in the near-term period is inclined
to increase towards higher emission scenario combinations; in contrast,
the opposite pattern is observed in the long-term period.

Fig. 8 represents the areal coverage of drought events for the
1995–2014 period and three future periods under four emission scenar-
ios in South Asia. In the reference period, the annual drought-affected
area was 12.4% of the total area. During 2021–2040, the projected
areal coverage will increase under all emission scenarios. Under the
SSP5–8.5 and SSP2–4.5 scenarios, the annual affected areal coverage
will be 18.3% of the total area at the highest and 17.2% at the lowest
area, respectively. In 2041–2060, the highest areal coverage accounts
for 15.9% under the SSP3–7.0 scenario. In the long-term period, the per-
centage of affected area decreases under SSP3–7.0 and SSP5–8.5 com-
pared to the reference period. Relative to the reference period,
drought area is projected to decrease the most by 62.1% under
SSP5–8.5 and increase by 41.3% under the lowest emission scenario
(SSP1–2.6). In summary, the percentage of affected area increases is
strongest during the near-term period, which further intends to de-
crease towards long-term periods. The drought-affected area in the
long-term period will largely decrease towards higher emission
scenarios.

3.5. Projected changes in population exposure and contributing factors to
exposure changes

To ascertain the prospective drought impacts on South Asia,
drought-induced population exposure and the role of associated contri-
bution factors under four SSP-RCP scenarios for the three future periods
and reference period are presented in Fig. 9. The population exposed to
drought in the 1995–2014 periodwas 384million, which is 24.2% of the
total population. The multi-model scenario-based analysis shows that
the population exposed to drought will increase across South Asia for
the three future periods compared to the reference period. Except for
SSP5–8.5 in the long-term period, the exposed population will increase
under all scenario combinations. In 2021–2040, population exposure is



Fig. 8.Drought areal coverage for the reference period (1995–2014) and three future periods (2021–2040, 2041–2060, and 2081–2100) under four SSP-RCP scenarios in South Asia, where
the red circles are the MME median values, and the lower and upper limits of the straight blue lines signify the 25th percentiles and 75th percentiles of GCMs, respectively.

Fig. 7. Spatial distribution of drought frequency under four SSP-RCP scenarios in South Asia: (a) for the reference period (1995–2014) and (b–m) future changes for three periods
(2021–2040, 2041–2060, and 2081–2100) relative to the reference period.
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Fig. 9. Average monthly population exposed to drought (blue circle, primary y-axis) and contribution of driving forces to exposure changes (pink square, yellow triangle (top) and green
diamond shapes, secondary y-axis) for the reference period (1995–2014) and three future periods (2021–2040, 2041–2060 and 2081–2100) under four SSP-RCP scenarios in South Asia;
where the filled coloured square, circle, triangle (top) and diamond shapes signify the MMEmedian value; and the lower and upper limit of the black straight lines denote the 25th and
75th percentile of the GCMs, respectively.
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predicted to be 1.7-, 1.9-, 2.0-, and 1.8-fold higher than the reference pe-
riod under SSP1–2.6 to SSP5–8.5, respectively. During the mid-term pe-
riod, higher population exposure is estimated to increase approximately
2.1- and 2.3-fold under SSP2–4.5 and SSP3–7.0, respectively, where the
lowest exposure (1.6-fold) is recorded under the SSP5–8.5 scenario. In
this period, the population exposed to drought peaked under all sce-
nario combinations except SSP5–8.5. In the long-term period, popula-
tion exposure to drought is comparatively weaker than that in earlier
periods. Surprisingly, the 2081–2100 exposure decreased by 18.8% rela-
tive to the reference period under SSP5–8.5. Exposure is projected to in-
crease to 1.9-fold higher than the reference period under the SSP3–7.0
scenario. In this period, population exposure increased under a strongly
fragmented pathway (SSP3) and decreased in the growth-oriented
world, securing both high forcing levels. It can be concluded that the
overall projected change in exposed people will be strongest from the
early part of the century to themiddle of the century and then gradually
becomeweaker until the far future under all scenario combinations. No-
tably, the higher exposure (2.1-, 2.3-, and 1.9-fold, respectively) was es-
timated under the worst-case scenario SSP3–7.0 for all three periods,
where the greatest increase was recorded at 132.2% (2.3-fold) in the
middle of the century with regard to the reference period. In contrast,
the largest decreasing exposure (18.8%) is projected under SSP5–8.5 in
the long-term period.

Furthermore, to assess the contribution of decomposition factors to
changing population exposure over South Asia in terms of the popula-
tion change effect, the climate change effect and population-climate in-
teraction change effect are illustrated in Fig. 9 (secondary y-axis). For
three targeted time horizons, under different scenario combinations,
the effects of population change and climate change are the main con-
tributors, while the effect of population-climate interaction is never
considered to be high in terms of exposure changes. In 2021–2041,
the climate change effect will have the largest contribution to changing
population exposure for all scenarios except SSP3–7.0. The highest con-
tribution is estimated to be almost 53.3% under SSP5–8.5,while thepop-
ulation change effect reaches 43.0% under SSP3–7.0. During the mid-
term period, the population change effect will be the prime factor for
population exposure changes under all scenarios, where the population
change effect is estimated to be 58.9% at the highest under SSP3–7.0,
whereas the climate change effect will contribute 34.4% under the
11
high emission scenarios (SSP5–8.5). In 2081–2100, the population
change effect will be dominant under SSP2–4.5 and SSP3–7.0, while
the climate change effect will be the main contributor under SSP1–2.6
and SSP5–8.5. In this time horizon, the climate change effect will have
the greatest contribution up to 89.6% under SSP5–8.5, and the popula-
tion change effect will reach ~84% for SSP3–7.0.

To further examine the geographic structure of the exposed pop-
ulation during 1995–2014 and the future, the changes under three
periods relative to 1995–2014 in South Asia are shown in Fig. 10.
Population exposure in the reference period (Fig. 10a) was an aver-
age of 1297 per km2 across South Asian countries. Population expo-
sure was comparatively low in the western part (Afghanistan as
well as the western part of Pakistan) but high in the northern and
south-eastern parts of South Asia. Population exposure >1000 per
km2 is estimated mostly across the Indo-Gangetic Plain region. In
the reference period, exposure is pronounced over major populous
cities, namely, Mumbai, Delhi, Bangalore, Hyderabad, Ahmedabad
of India; Karachi, Lahore, Faisalabad of Pakistan; Colombo of Sri
Lanka, and throughout Bangladesh.

To refine the spatial distribution for the future periods, the results
show that exposed people are pronounced mostly over India due to
the country being highly populated as well as the more frequent
drought events. In the near-term period (2021–2040) (Fig. 10b, e,
h, and k), population exposure to drought is expected to increase
by ≥150% compared to that in 1995–2014, mostly across the central
and eastern states of India, as well as part of Nepal and Bangladesh
under SSP3–7.0 and SSP2–4.5. Furthermore, the number of exposed
people will increase by 120% under SSP5–8.5 across the western,
central, and eastern states of India, while the lowest increase (50%–
80%) is mainly exhibited under the low emission scenario SSP1–2.6
over similar areas and extends to Pakistan and Afghanistan. Like-
wise, in the middle of the century (Fig. 10c, f, i, and l), the strongest
pattern of increased exposure (≥150%) is observed under the
SSP3–7.0 and SSP2–4.5 scenarios. The pronounced pattern is distrib-
uted over the large cities, namely, Mumbai, Ahmedabad, Pune,
Hyderabad, Bengaluru, Kolkata, Delhi of India; Balochistan, Sindh,
and Hyderabad of Pakistan; Herat of Afghanistan, Katmandu of
Nepal, and Dhaka of Bangladesh SSP3–7.0.5, especially under
SSP3–7.0. In this period, exposure is inclined to increase by 50%–



Fig. 10. Spatial distribution of population exposure under four SSP-RCP scenarios in South Asia: (a) for the reference period (1995–2014) and (b–m) future changes for three periods
(2021–2040, 2041–2060, and 2081–2100) relative to the reference period.
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80% for SSP5–8.5 and SSP1–2.6 across the eastern part of South Asia
with an extended tendency to increase by 120%, mostly across
Pakistan and Afghanistan. By the long-term period (Fig. 10d, g, j,
and m), the largest increase in exposure (>150%) is estimated
under SSP3–7.0, which is strongest across the western part of
South Asia (mostly Afghanistan). In contrast, population exposure
is anticipated to decrease greatly over the eastern part under
SSP5–8.5. During this period, the western part (Pakistan and
Afghanistan) exhibited an increase in exposure under all scenario
combinations. Since the drought frequency and population growth
(except SSP3) are projected to be lower in this period, the central
and eastern parts of South Asia (India, Sri Lanka, Nepal, Bhutan,
and Bangladesh) show a low or even high decreasing (≤95%) pattern
under the higher emission scenario. In summary, in relative terms,
the pronounced spatial distribution pattern largely exhibits an
east-to-west shift from the near-term to long-term period. The
highest increasing pattern is pronounced under high societal
vulnerability with the medium to high forcing level scenario
SSP3–7.0 (Fig. 10h, i, and j) for all the target periods. In terms of sub-
stantial increases, the geographical distribution of the exposed
population is predicted to become even more pronounced over
India, Afghanistan, Bangladesh, and part of Pakistan, especially
under the worst-case scenarios (SSP3–7.0) in the middle of the
century. Notably, exposure to drought is predicted to decrease
12
significantly in India, Sri Lanka, Nepal, Bhutan, and Bangladesh for
SSP5–8.5 in 2081–2100.

4. Discussion

This paper represents population exposure to drought as well as as-
sociated factors influencing exposure changes over time in South Asia.
In this regard, 20 up-to-date GCMoutputs under four SSP-RCP scenarios
are explicitly used from the new-state-of-the-art CMIP6, and projected
population data encapsulated under socio-economic scenarios (SSPs).
To explore drought-induced population exposure throughout the 21st
century, the SPEI-based drought frequency and affected area were pre-
dicted first, and finally, the impact of different causal factors on expo-
sure changes was quantified.

Since CMIP6 is still in the incipient phase, all the essential variables
are not available for all the GCMs under all designed scenarios. To
date, 20 GCMs have been made available with all required variables
(for this study) under four common SSPs-RCPs scenarios (SSP1–2.6,
SSP2–4.5, SSP3–7.0, and SSP5–8.5) among these GCMs. In addition,
the performance of the GCM evaluation against the observed dataset
signifies that most of the selected models have good capability in cap-
turing climate variability over South Asia. These findings suggest an
added improvement in the horizontal resolution of CMIP6-GCMs. The
enhanced performance of climate models can be influenced by high
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horizontal resolution (Watterson et al., 2014). Therefore, in relative
terms, the improved performance of GCMs in apprehending climate pa-
rameters and drought characteristics is likely associated with the
boosted representation of physical processes in the CMIP6 climate
models. Advances in the representation of physical processes have
been made in GCMs from CMIP6, as also reported by some previous
studies (Di Luca et al., 2020; Xin et al., 2020; McKenna et al., 2020; Su
et al., 2020). Therefore, the selected 20 high-resolution global climate
models with four common SSP-RCP scenarios are considered for further
analysis. Next, it has been recognized that the multi-model ensemble
provides a reliable estimation for scenario-based studies instead of
using an individual model's output. In this study, the evaluation results
indicate that the multi-model ensemble (MME) median securing bias
correction provides better representativeness than an individual
model. Similarly, Pierce et al. (2009) stated that the multi-model en-
semble depicts an improved overview of regional climate change com-
pared to an individual model by reducing the spatial ambiguity and
inconsistency.

To determine the magnitude of the changes to the exposed popula-
tion over time, a reasonable reflection of drought is a prime concern. In
this study, themulti-model simulated soilmoisture, runoff, and drought
indices (SPEIs) predicted increased drought riskwith similar spatial dis-
tributions in South Asia. These comprehensive analyses suggest an obvi-
ous drought conditions in the western part of South Asia, whereas the
eastern part will face extreme wetness conditions (which might result
in flooding). This findings strongly corroborate the statement by
Schleussner et al. (2018) that one part of the climate hotspot of South
Asia will face acute drought conditions, while the opposite area will be
flooded by the 21st century. Therefore, the anticipated drought reflec-
tion in South Asia calculated by using the SPEI index can be considered
an accurate demonstration within these included GCMswith decreased
uncertainty and variability.

The anticipation of population exposure to drought under a chang-
ing climate signifies the rapidity of the human systembeing jeopardized
by hazards. Drought-induced population exposure is interconnected
with its occurrence, area coverage, and intensity as well as the spatio-
temporal distribution of the population. However, population exposure
to drought in South Asia is predicted to become greater than that in
the current period due to the more frequent occurrence of drought
events with extended areal coverage as well as the level of population
growth. Among the three target periods, this study discerns a stronger
escalation in drought occurrence with a higher percentage of area cov-
erage in the near-term period (2021–2040) and a further tendency to
diminish on the road to a long-term period. Likewise, the exposed pop-
ulation is inclined to be dominant in the near-term as well as mid-term
periods but drastically reduced onwards at the end of the century
(2081–2100). This result is an indication of concrete uniformity and in-
terconnection among the findings in terms of both quantitative estima-
tion and spatial distribution. The new generation of climate models
from CMIP6 can increase the confidence in projecting strong exposure
changes under all the scenarios. Considering the high confidence, policy
makers shouldmake efforts to enhance resilience and adapt to growing
exposure as well as the proper provision of migration systems through-
out the coming 20–40 years. However, the findings of this study corrob-
orate those of some previous studies. The CMIP5-based study by Wang
et al. (2020) reported enlarged exposure to drought in the Indus River
Basin of South Asia for 2021–2065. In the 2020–2039 period, the people
exposed to drought are predicted to increase compared to the historical
period (Wen et al., 2019). Similarly, Chen et al. (2018) reported that
moderate drought will be aggravated in China through the 2020–2039
period, resulted in the largest affected population. Notably, an unavoid-
able increase in population exposure to drought is predicted to occur
over South Asia by the early and middle of the century.

It can behighlighted that our study demonstrates a stronger increase
in drought frequency in the near-term period than in the long-term pe-
riod. This result could be due to lowering precipitation and PET
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estimated in the near-term period across South Asia, while excessive
precipitation and PET are anticipated by the end of the century, espe-
cially under the high forcing levels. A great increase in precipitation is
predicted for SSP5–8.5 in the study area by the 21st century
(Almazroui et al., 2020; Zhai et al., 2020). In general, drought events
with short durations are more frequent in occurrence, while long-
term droughts occur less frequently. In addition, decreasing precipita-
tion influences short-term drought occurrence, and a large evaporative
demand leads to long-term events. High evaporation contributes to a
decline in surface runoff and soil moisture, which augments drought
persistence significantly compared to precipitation (Sun et al., 2017).
Furthermore, many studies using CMIP5 reported that the frequency
and level of intensity of drought will be intensified with increasing
global temperatures (Cook et al., 2018; Smirnov et al., 2016; Su et al.,
2018; Lin et al., 2020). However, Lehner et al. (2017) stated that the
risks of drought and temperature increases do not always follow any
simple linear relationship. Miao et al. (2020) mentioned that dryness
conditions across Asian drylands are projected to worsen at 1.5 °C com-
pared to 2.0 °C, which signifies that an increase in global temperature
would not lead to drought escalation. As drought is controlled by differ-
ent components of the hydrological cycle (precipitation, evaporation,
runoff, etc.), the risks, degree, intensity, duration and effects of drought
vary by region. Nonetheless, a recent study using CMIP6 stated that the
near future period can be considered a drought-prone period for India
(Shrestha et al., 2020). A CMIP6-based study in South Asia by Zhai
et al. (2020) found that drought eventswill become evenmore frequent
under a low emission scenario (SSP1–2.6) than under a high emission
scenario (SSP5–8.5). In the near-term period, drought events will be
triggered by decreasing precipitation, whereas drought occurrence in
the long-term period will be reduced by the alleviating response of
heavy rainfall, especially for high emission scenarios. Furthermore, as
PET is inclined to increase largely in the long-term period, drought
events will occur with longer durations but less frequently. It is appar-
ent that future drought escalation in South Asia will lead to increased
evaporative demand. Therefore, it must be suggested to use PET-based
drought indices to reflect the actual drought conditions in South Asia.
Significant changes in South Asian climate parameters will be contrib-
uted by high greenhouse gas (GHG) emissions, since large increases in
PET and precipitation are anticipated to increase under the scenarios
with high mitigation challenges and low adaptation challenges
(SSP5–8.5) in the long-term period. The latest study using CMIP6 by
Ha et al. (2020) also reported that heavy precipitation and large PET
will increase over Asia, where PET is offset by precipitation in India.
Since both PET and precipitation are predicted to increase under SSP-
RCP scenarios, considering the ratio of PET and precipitation, drought
might become worse in the future due to evaporative demand (Jiang
et al., 2020a).

This study reveals that the effects of precipitation and PET on dry-
ness/wetness trends are significant from a long-term perspective
(2081–2100) (Table S2). The process of dry events (drought) was orig-
inally accelerated by the decrease in precipitation in the early stage.
Trenberth et al. (2013) also stated that warming-induced drought
eventsmay have been accelerated andworsened due to a lack of precip-
itation in the early part of the century. However, with regard to relative
changes, precipitation increases faster than PET (wet conditions) in the
long-term period. The probability of the area affected by wet events
(floods) is higher in this period, especially under high emission scenar-
ios. The region will be wetter in the far future; the increase in P-PET is
induced by a substantial increase in precipitation (relative to the histor-
ical period). Precipitation increases of ≥10% contribute to a decrease in
extent of the drought frequency increase (Table S2). When the increase
in precipitation reaches 15%, the drought frequency decreases ~8%
under SSP3–7.0. Similarly, the chances of the occurrence of extreme
wet events (flood) were augmented (drought frequency decline ~18%)
when precipitationwas inclined to increase by>20%. Therefore, it is ob-
vious that extreme wetness events (floods) across some regions of
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South Asia could be triggered due to an excessive increase in precipita-
tion at the end of the century. Consequently, population exposure to
drought is projected to decrease (Fig. 9). Nath et al. (2017) also stated
that the Indo-Gangetic region of South Asia will be affected by wet
events (floods) in the long-term period due to excessive rain. However,
the precipitation effects on regional dryness and wetness trends are
interlinked not only to the precipitation amount but also to the aggrega-
tion extent, frequency, and intensity of the precipitation. The greater the
precipitation concentration, the more chances to accelerate extreme
wet events.

Furthermore, recognizing the significance of various decomposition
factors (i.e., climate change effect, population change effect, and interac-
tion effect) on exposure changes provides a pivotal basis for initiating
policy responses to reduce the number of South Asian people exposed
to drought. In the near-term period, the climate change effect is found
to become a pivotal causal factor in exposure changes across South
Asia, as the occurrence of drought events with a large affected area is
predicted to trigger more rapid exposure with time. During this period,
population growth is considered to be sluggish, while the climate
change effect contributes largely to shaping the future level of exposure
to increase under all emission scenarios except SSP3–7.0. Hence, it is ob-
vious that compared to future population changes, estimated exposure
will be most sensitive to future GHG (mainly CO2) concentration
changes during the early part of the century. In contrast, the effect of de-
mographic changes on exposure changes is significant for themid-term
period under all emission scenarios. In this period, population growth is
estimated to peak under all scenarios, especially the high societal vul-
nerability scenario SSP3. Future changes in climate during the mid-
term period play a minor role in explaining exposure changes over
South Asia. Furthermore, in the long-term period, the effect of popula-
tion changes is the primary contributor under SSP2–4.5 and SSP3–7.0,
whereas the climate change effect is dominant under the SSP1–2.6
and SSP5–8.5 scenarios. Interestingly, in the long-term period, popula-
tion exposure is projected to decrease under SSP5–8.5 due to a decrease
in drought frequency. Gupta and Jain (2018) also reported that drought
frequency in the far future will decrease under high emission scenarios
(RCP8.5) across the eastern state of India, which is similar to our result.
However, exposure changes in South Asia are mainly due to demo-
graphic changes. The demographic change effect is robust under
SSP3–7.0 for all periods, as the highest number of people is projected
to increase continually under the SSP3 scenarios in South Asia. The
number of people exposed to drought is the largest under the
SSP3–7.0 scenario as the combination of a relatively high societal vul-
nerability scenario (SSP3) with a high forcing level. SSP3 imposes high
mitigation and adaptation challenges (O'Neill et al., 2017). Rapid popu-
lation growth, highly unmitigated emissions, slow technological
changes in the energy sector, low investment in human capital, high in-
equality, unfavourable institutional development, and a large number of
people under climate change conditionswould likely trigger a strong in-
crease in vulnerable conditions for South Asian countries, worsening
further drought impacts. The greatest drought-exposed population is
estimated under the newly developed gap scenario SSP3–7.0, which
was not possible by using previous CMIP5 scenario combinations. The
consideration of a future ‘plausible world’ regional rivalry or fragmenta-
tion pathway-based forcing scenario is obvious for further study over
South Asian countries. Generally, in South Asian countries, population
growth is high, mainly in India, which is the second most populous
country in the world with high density. In addition, some pivotal fea-
tures of regional rivalry appear daybyday amongSouthAsian countries.
Resurgent nationalism, regional conflicts and competitiveness, more
focus on achieving energy and food security, slow economic develop-
ment, increasing fossil fuel dependency, persistent inequalities, and
border-based development issues are salient aspects of fragmentation
in South Asia. Current border-based conflict along Indian borders with
different neighbouring countries, such as Pakistan, China, Nepal and
Bangladesh, is vibrant evidence. Therefore, low international priority
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for addressing environmental changes leads to strong climate change
impacts on humans. However, this study highlights two key insights re-
garding policy interventions in South Asia: climate change mitigation
and population growth control dimensions. The relation between
these two components is vis-a-vis. The more population growth there
is, the more anthropogenic climate change enhancement there is. In
contrast, a changing climate aggravates population exposure to drought
acutely, resulting in a dense population. Hence, additional attention
should be urgently paid to formulate policies on climate change mitiga-
tion through GHG emissions cuts as well as population growth control
to reduce future population exposure to drought in South Asia, focusing
on India. The formulation of population and adaptation policies is ur-
gent in South Asia to limit population growth and enhance adaptations
to drought. Changes in population exposure are mainly influenced by
the population change effect over Asia, focusing on India, China, and
Bangladesh (Liao et al., 2019). However, Smirnov et al. (2016) reported
that the overall condition of the changing climate is more responsible
for population exposure to extreme drought across India, Bangladesh,
and other South Asian countries under RCP4.5 and RCP8.5. This contra-
dictionmay be due to the new generation of GCM (CMIP6) outputs and
different scenarios used in this study. On the other hand, exposure
change is greatly driven by the climate change effect under SSP5–8.5
in all periods. Such a plausible outcome signifies the direct implications
of climate mitigation policies to limit emissions. Furthermore, in terms
of spatial coverage, the exposed population will be low in the high
land (mountains) as well as desert areas but large in the plain and pop-
ulous areas across South Asia. These changes are subjective to the over-
all major increase in exposed population numbers over the high
population growth in India during the near-term to mid-term period.
In contrast, the exposed population is anticipated to be pronounced in
Afghanistan at the end of the century. Hence, additional concern must
be given to monitoring in relation to future droughts in India and
Afghanistan.Watts et al. (2015) also found similar findings that popula-
tion exposure is low in mountainous regions but high in densely popu-
lated areas. Nonetheless, given the prior importance in the population
change effect as well as the climate change effect as the key drivers of
exposure changes, a substantial policy designed to reduce South Asian
population exposure to droughtmust beneeded to paypivotal attention
to socio-economic advancement and climate change mitigation efforts,
especially for the near-term and mid-term periods of the century.

Dissecting the anticipated changes, it can be boldly written that not
only will climatological drought increase across South Asia in the future
but also extremewet events (floods)will becomeprobable at the end of
the century. Extreme events, including droughts and floods, will be-
come more common over South Asia due to increased variability in cli-
mate parameters (especially precipitation). In spatial terms, wetness is
projected to increase across the eastern part of South Asia, but dryness
will be sustained in the western part (Fig. 5). This study incorporated
the impact of drought on South Asia in the future, while the results
show that in the long term, the population may not be exposed to
droughts (water shortage), and they may be exposed to floods and
other natural disasters. As precipitation is projected to increase, it in-
creases the risk offlooding in the study area andmay cause immigration
driven by climate change to the area, which adds uncertainty to the re-
sults of the study.

5. Conclusions

This work has explored the anticipated changes in the exposure of
the South Asian population to drought with the contribution of decom-
position factors to exposure changes under four of the latest CMIP6 sce-
narios for the three future periods (2021–2040, 2041–2060, and
2081–2100). The use of a bias-corrected MME median has enhanced
the confidence in discerning drought events and exposure predictions
over South Asia. The results show that the evaluation of precipitation
and potential evapotranspiration (PET) shows that the CMIP6 model
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ensemble is robust in simulating climate variables in South Asia. In ad-
dition, comprehensive analyses of soil moisture, runoff, and SPEI sug-
gest actual representation of drought in South Asia within the
selected GCMs.

The results of the study revealed that with the improvement in the
spatial resolution in CMIP6-GCMs, the selected models performed well
in capturing regional climate variables and accurately reflectingdrought
across South Asia. It is anticipated that both precipitation and PET will
increase from 2021 to 2040 to 2081–2100 relative to the reference pe-
riod. Furthermore, the study reveals that compared to 1995–2014,
drought events and drought-affected areas escalated with higher emis-
sion scenarios, which were strongest in the near-term period and
tended to decrease in the long-term period. Frequent drought events
are pronounced in the central and south-eastern parts of India and
Nepal in the near- and mid-term periods. In the long term, increasing
frequency patterns dominated across the western part, especially in
Pakistan and Afghanistan, but greatly decreased in the eastern part of
South Asia. The overall projected increase in the number of exposed
populations will be strongest (>1.5-fold) from the early century to the
middle of the century and then gradually become weaker until the far
future under all scenario combinations. Notably, the highest exposure
(2.1-, 2.3-, and 1.9-fold) was estimated under the worst-case scenario
SSP3–7.0 for all three periods, where the greatest increasewas recorded
at 132.2% (2.3-fold) in the middle of the century with regard to the ref-
erence period. In contrast, the largest decreasing exposure (18.8%) was
projected under SSP5–8.5. In terms of geographic distribution, a signifi-
cant increase in the number of people exposed to drought will be pro-
nounced across India, especially in the near-term to mid-term period,
while it will greatly shift towards the west (mostly Afghanistan) by
the endof the 21st century. Finally, it was estimated that the two pivotal
factors in population exposure changes are drought frequency and pop-
ulation change. Taking into account all the scenarios and time periods,
the population change effect has a prime role in South Asian exposure
changes; climate change has a further effect, and population-climate in-
teraction has never the leading effect. The climate change effect is dom-
inant in the near-term period, where the population change effect is
prominent in the mid-term period. However, the climate change effect
has a larger effect on exposure changes under SSP5–8.5, whereas the
population change effect is greater under SSP3–7.0.

The limitations of this study include that in our analysis, this paper
did not consider population patterns in rural-urban areas or demo-
graphic and socioeconomic characteristics of the population, such as
age, gender, income, or level of education, which are considered to in-
fluence drought-related death or injury. Moreover, SSP-based projected
global population data are widely used as the best high-resolution data,
which has some uncertainties. Themain uncertainty is derived from the
assumption of demographic evolution. In SSP scenarios, population pro-
jections do not consider changes in the population policies of individual
countries (i.e., two-child policy in China). Therefore, it is needed to con-
sider this key population policy assumption in the simulation period
data to secure the accuracy of the future risk assessment results. More-
over, warming-induced climate change leads to escalated drought fre-
quency, whereas socioeconomic development enhances social
awareness and capabilities to reduce disaster vulnerability. Population
exposure to drought depends on both the hazards and regional fortifica-
tion status. The estimated exposed population in drought-prone areas
may not be the actual overview, as this study does not consider the
regional-level adaptation mechanism to drought. Therefore, further
studies on population exposure to drought should consider the regional
fortification level. Furthermore, it has been recognized that GCM
output-based projections typically insert some unavoidable uncer-
tainties. Uncertainty could arise mainly due to model parameterization,
internal variability, and GHG emission considerations. In addition, the
PET calculation method, choice of drought indices, and population pre-
dictions are sources of uncertainty. In this study,we considered only hy-
drological drought to assess population exposure using the SPEI-12.
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Therefore, it is suggested to conduct a further study by considering
other drought types under the latest CMIP6 scenarios.

This study has highlighted some key insights into initiating
diverse policy interventions. In the near future, mitigation policy
interventions for changing climates will be the pivotal basis to
reduce drought-induced exposure in South Asian countries.
Policymaking focusing on population growth control will be vital
for mid- and long-term periods. These policy-interventions can
be well-explained by the IPCC (2007) report that limiting global
temperature rise to 1.5 °C compared to 2.0 °C can reduce the frac-
tion of the global population exposure to climate-induced water
stress by 50%. Reducing the cumulative Co2 emissions is essential
to limiting global warming. IPCC (2018) summarizes that to limit
the warming of 1.5 °C under model scenarios, global anthropo-
genic net Co2 emission is estimated to reduce by about 45% by
2030, and reach net-zero levels by 2045–2055. For holding global
warming below 2.0 °C, anthropogenic Co2 emissions are antici-
pated to decline 25% by the near-term period (around 2030),
and net-zero level achieved by the long-term period (around
2065–2080). Therefore, the findings of this study emphasize on
executing global emissions mitigation ambitions designed under
the Paris Agreement. However, changes to the hotspots of popula-
tion exposure in South Asia are identified, and the detailed find-
ings provide guidance for drought monitoring and associated risk
management. As the latest CMIP6 model output was used, the
findings of this study can serves as a reasonable and reliable
basis for significant implications on policy making in regard to
water resource planning and migration management over South
Asian countries.
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