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A B S T R A C T

Solar-induced chlorophyll fluorescence (SIF), an electromagnetic signal that can potentially indicate vegetation
photosynthetic activity, can be retrieved from ground-based, airborne and satellite measurements. However, due
to the scattering and re-absorption effects inside the leaves and canopy, SIF measured at the canopy level is only
a small part of the total SIF emission at the photosystem level. Therefore, a downscaling mechanism of SIF from
the canopy level to the photosystem level is important for better understanding the relationship between SIF and
the vegetation gross primary production (GPP). In this study, firstly, we analyzed the canopy scattering effects
using a simple parameterization model based on the spectral invariant theory. The probability for SIF photons to
escape from the canopy was found to be related to the anisotropic spectral reflectance, canopy interception of the
upward solar radiation, and leaf absorption. An empirical approach based on a Random Forest (RF) regression
algorithm was applied to downscale SIF constrained by the red, red-edge and far-red anisotropic reflectance. The
RF was trained using simulations conducted with the Soil Canopy Observation, Photochemistry and Energy
fluxes (SCOPE) model. The performance of the SIF downscaling method was evaluated with SCOPE and Discrete
Anisotropic Radiative Transfer (DART) model simulations, ground measurements and airborne data. Results
show that estimated SIF at the photosystem level matches well with simulated reference data, and the re-
lationship between SIF and photosynthetically active radiation absorbed by chlorophyll is improved by SIF
downscaling. This finding in combination with other evaluation criteria suggests the downscaling of canopy SIF
as an efficient strategy to normalize species dependent effects of canopy structure and varying solar-view geo-
metries. Based on our results for the SIF-APAR relationship, we expect that such normalization approaches can
be helpful to improve estimates of photosynthesis using remote sensing measurements of SIF.

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) has been proved to be
an efficient tool for monitoring of gross primary production (GPP),
showing large advantages compared with other remote sensing in-
dicators based on reflectance-data (Guanter et al., 2014; Migliavacca
et al., 2017; Porcar-Castell et al., 2014; Sun et al., 2017; Zhang et al.,
2016). The photosynthetically active energy absorbed by leaf pigments
can be: i) used in photochemical reactions, ii) dissipated as heat, or iii)
re-emitted as fluorescence (Porcar-Castell et al., 2014). Unlike the

reflectance based parameters, SIF is, as a by-product of photosynthesis,
more directly related to GPP (Berry et al., 2012; Coops et al., 2010;
Damm et al., 2015a; Zarco-Tejada et al., 2013).

Validity of the resource balancing paradigm (Field et al., 1998) in
combination with the Monteith light use efficiency (LUE) model
(Monteith, 1972; Monteith and Moss, 1977) is the foundation of most of
the approaches for the estimation of GPP from remote sensing data. The
LUE model can be expressed as:

= × ×GPP PAR fAPAR LUE (1)
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where PAR stands for the photosynthetically active radiation, fAPAR is
the fraction of PAR absorbed by vegetation, and LUE is the light use
efficiency, defined as the number of μmol of CO2 absorbed per μmol of
photons.

Similarly, the total SIF emission at the photosystem (PS) level (the
total SIF emission inside the leaves without any scattering or re-ab-
sorption) can be expressed as (Berry et al., 2012; Liu et al., 2017a, b;
Moya and Cerovic, 2004; Porcar-Castell et al., 2014; Wieneke et al.,
2016):

= × ×SIF (λ) PAR fAPAR F (λ)PS yield (2)

where λ is the wavelength, and Fyield is the quantum yield for chlor-
ophyll fluorescence. If Fyield is constant, then SIFPS is linearly related to
the PAR absorbed by vegetation.

In recent years, we have been experiencing a rapid development of
methods for SIF retrieval from spectral remote sensing data
(Malenovský et al., 2009). The SIF signal can be detected by ground-
based (Grossmanna, 2014; Liu et al., 2005, 2017a; L. Liu et al., 2015; X.
Liu et al., 2015; Wyber et al., 2017; Yang et al., 2015; Cogliati et al.,
2015; Burkart et al., 2015), airborne (Damm et al., 2014; Rascher et al.,
2015; Wieneke et al., 2016), and space-borne sensors (Frankenberg
et al., 2011; Guanter et al., 2012; Joiner et al., 2011, 2013; Köhler et al.,
2015). However, SIF is emitted by chlorophyll a molecules, which are
contained inside chloroplasts at different leaf mesophyll layers. Re-
absorption and scattering of SIF are both taking place inside leaves as
well as within the canopy. Using remote sensing approaches at large
scales, it is only possible to measure SIF at the canopy level (SIFCanopy,
defined as SIF escaping from the canopy in a specific viewing direction).

The SIF spectrum extends over the wavelength range from about
640 to 850 nm, with two peaks centered at 685 nm and 740 nm. Ramos
and Lagorio (2004) pointed out that the spectral shape of fluorescence
measured at leaf level was influenced by the leaf re-absorption, and
developed a model to correct the spectral shape using leaf reflectance.
Van Wittenberghe et al. (2015) studied the upward and downward SIF
emission at the leaf level separately using a special leaf probe called
FluoWat, and found that the partitioning of the upward and downward
SIF components is influenced by scattering and absorption processes
related to the leaf structure and the pigment content. This indicates that
the red SIF at 685 nm is strongly influenced by chlorophyll absorption
within the leaves, while far-red SIF is mainly influenced by scattering
effect of leaf tissue structures. Several studies have reported a decrease
in the red/far-red SIF ratio from leaf level to canopy level (Fournier
et al., 2012; Moya et al., 2006; Romero et al., 2018), which can be,
besides the environmental stress exposure (Ač et al., 2015), explained
by the strong re-absorption of SIF by chlorophyll at the red band
(Daumard et al., 2012; Fournier et al., 2012; Agati et al., 1993; Cordón
and Lagorio, 2006; Porcar-Castell et al., 2014; Romero et al., 2018). Liu
et al. (2016) observed similar anisotropic characteristics for SIF and
reflectance at the canopy level, and claimed that the phenomenon can
be attributed to re-absorption by canopy components and the bidirec-
tional canopy gap fraction. Other studies also reported a similar ani-
sotropic effect for SIF retrieved from space (e.g. Guanter et al., 2012;
Joiner et al., 2012), while He et al. (2017) proved that an angular
normalization of SIF strengthens SIF-GPP relationships. Further, Du
et al. (2017) reported a species-dependent relationship between
SIFCanopy and PAR absorbed by chlorophyll (APARchl), and pointed out
that the uncertainty in the SIF escape probability weakens the re-
lationship between SIF and APARchl or GPP, especially at the red band.
Therefore, downscaling of SIF from canopy level to PS level is im-
portant to better constrain estimates of GPP using remote sensing ob-
servations of SIF.

There are two very recent studies focusing on the problem of SIF
downscaling. Romero et al. (2018) developed a physical model based
on the canopy reflectance, canopy transmittance and soil reflectance to
correct the spectral shape of fluorescence emission from canopy level to
leaf level. Together with the study by Ramos and Lagorio (2004), the

fluorescence spectral shape at PS level could also be retrieved. How-
ever, the absolute SIF intensity was not available. Yang and Van der Tol
(2018) linked the canopy scattering of far-red SIF to the canopy re-
flectance, canopy interceptance and leaf albedo based on canopy ra-
diative transfer analysis, but the model was not valid for the red band
and the input parameters were not easy to be accurately measured or
estimated. Moreover, the SIF downscaling from leaf level to PS level
was not included.

Given the fact that the radiative transfer of emitted SIF within a
canopy is similar to that for scattered solar radiation, it can be assumed
that the modelling of top-of-canopy (TOC) spectral reflectance can
approximate the canopy effects on SIF, which is needed for the esti-
mation of SIF escape probability from PS level to canopy level (εCP)
(Van der Tol et al., 2009; Liu et al., 2016). To express the radiative
transfer equation within the canopy together with the leaf scattering
coefficient, Knyazikhin et al. (1998) introduced a spectral invariant p,
which was defined by Smolander and Stenberg (2005) as photon re-
collision probability. Another spectral invariant, bi-directional gap
fraction, was introduced to quantify the probability of scattered pho-
tons to escape the canopy via gaps in the direction of viewing (Huang
et al., 2007; Knyazikhin et al., 2011). The so-called ‘spectral invariant
theory’ has been successfully used to better understand the absorption
and scattering effects within the canopy and also to link the reflectance
at the canopy level and leaf level (Huang et al., 2007; Knyazikhin et al.,
2013; Smolander and Stenberg, 2005; Stenberg et al., 2016; Wang et al.,
2003). Similarly, the spectral invariant theory can be applied to model
the escape probability for SIF with a number of parameters describing
the leaf optical properties, canopy structure, and background re-
flectance. However, these parameters are usually difficult to accurately
measure or estimate. Moreover, spectral invariant theory can only
model the radiative transfer process from leaf level to canopy level,
while SIF is emitted from inside the leaves, which means that the re-
absorption of SIF photons within the leaves (leaf internal absorption) is
not accounted for. Although the canopy reflectance also contains in-
formation about the leaf absorption, it is difficult to directly link this to
the SIF absorption inside the leaves.

Supervised machine learning approaches trained on appropriate
training dataset are capable of building accurate prediction models (Ma
et al., 2014) that can empirically overcome the difficulties in the phy-
sical modelling described above (the unavailable input parameters for
the physical model can be estimated by machine learning approaches
using available information). The physically based analysis of the ra-
diative transfer process is, in turn, able to point out the appropriate
input parameters used in the machine learning methods.

This study aims to define and evaluate a practical solution for the
downscaling of SIF from the canopy level to the PS level. The SIF ra-
diative transfer within canopy and inside leaves is analyzed based on
the spectral invariant theory and leaf-level simulations to define the key
parameters driving the SIF downscaling from canopy level to leaf and
PS levels. We then employ an empirical approach based on random
forest (RF) regression (Breiman, 2001) to predict the SIF escape prob-
ability from leaf level to canopy level (εCL) and from PS level to canopy
level (εCP) using reflectance information. The Soil Canopy Observation,
Photochemistry and Energy fluxes (SCOPE) model (Van der Tol et al.,
2009) was then used for the simulation of the training dataset. Finally,
we evaluate the performance of the SIF downscaling using SCOPE and
Discrete Anisotropic Radiative Transfer (DART) model simulations,
ground and airborne data. The presented approach facilitates the nor-
malization of SIF observations across canopy types observed under
varying sun-view geometries, and eventually improves our under-
standing on the relationship between SIF emission and photosynthetic
activity.
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2. Materials and methods

2.1. Simulated datasets

2.1.1. SCOPE simulation
The SCOPE model (Van der Tol et al., 2009) is a vertical (1-D) in-

tegrated radiative transfer and energy balance model, which is able to
simulate leaf and canopy spectral reflectance and SIF as well as pho-
tosynthesis and water and heat flux by linking the radiative transfer
with micro-meteorological processes. SCOPE has been widely used in
the field of SIF research (e.g. Verrelst et al., 2015; Zhang et al., 2016;
Yang and Van der Tol, 2018). The latest version of SCOPE (v1.7) pro-
vides users with SIF at canopy level, leaf level (SIF emitted by all leaves,
excluding the re-absorption and scattering within the canopy) and at PS
level (SIF emitted by all photosystems, excluding the re-absorption
within the leaves). Therefore, we used SCOPE v1.7 for the simulation of
SIF at the canopy, leaf and PS levels, along with that of the canopy
directional reflectance, leaf reflectance and transmittance.

In the SIF emission spectral range (~640–850 nm), the amount of
absorption by leaves is mainly related to chlorophyll content
(Jacquemoud and Baret, 1990). The canopy scattering is mainly related
to the canopy structure parameters (leaf area index (LAI), leaf in-
clination distribution, etc.) and solar-view geometries (solar zenith
angle (SZA), view zenith angle (VZA) and relative azimuth angle
(RAA)) (Verhoef, 1984). We parameterized SCOPE for sets of different
leaf chlorophyll contents (Cab), LAI levels and six typical leaf inclina-
tion distributions to cover most common vegetation conditions. Ad-
ditionally, different SZAs and VZAs in the solar principal plane were
also defined. The full-width-at-half-maximum spectral response
(FWHM) and spectral sampling interval (SSI) for the SCOPE simulations
are 1 nm. Details about the SCOPE input parameters are listed in
Table 1. As a result, 6240 different samples were generated.

2.1.2. DART simulation
DART is a three-dimensional (3-D) radiative transfer model that

allows simulating the radiation budget as well as remotely sensed
images of natural and urban surfaces covering the range from the ul-
traviolet to the thermal infrared band (Gastellu-Etchegorry et al.,
2015). Recently, a SIF module that allows simulations of SIF radiative
transfer within 3-D canopies has been added to DART (Gastellu-
Etchegorry et al., 2017). Similar to SCOPE, DART uses the Fluspect
model (Vilfan et al., 2016) to simulate the reflectance, transmittance
and SIF emission at the leaf level. In this study, the DART model
(v5.6.6) was employed to simulate SIF at both the canopy and leaf le-
vels, together with the directional reflectance of 50 different viewing
angles for two geometrically explicit and architecturally different ca-
nopies of maize (Zea mays L.) and Norway spruce (Picea abies/L./H.
Karst.). The DART parameterization details are listed in Table 2. Fig. 1

shows the simulated multi-angular SIF at canopy level for maize and
spruce at the far-red (740 nm) and red bands (687 nm).

2.2. Ground measurements

2.2.1. Multi-species experiments
A dataset comprising ground spectral measurements of different

species, acquired at three sites, following three specific experimental
settings was used to evaluate the performance of SIF downscaling for
different canopy structures.

Spectral measurements of winter wheat (Triticum) were carried out
on five days at the National Precision Agriculture Demonstration Base
located at Xiao Tangshan Farm (XTS, 40°11′N, 116°27′E), north of
Beijing, China. Diurnal cycles of radiance measurements (nadir view)
were conducted on April 8–9 and 18, 2016, when the growth stages of
the winter wheat were jointing and booting, and on November 7 and
December 8, 2016 when the growth stages were emergence and til-
lering, respectively. The leaf inclination distribution function (LIDF) of
winter wheat was assumed to be spherical based on a visual inspection.

Measurements of cotton (Gossypium) and different kinds of vege-
tables (i.e. sweet potato (Ipomoea batatas), Chinese cabbage (Brassica
rapa pekinensis), thyme (Thymus), pumpkin (Cucurbita Cucurbita)) were
carried out on December 18, 2016 at Nanbin Farm (NBF, 18°22′N,
109°10′E) in Hainan Province, China. The LIDF types of the vegetables
and cotton are mostly close to planophile based on visual assessment.
For convenience, the term ‘vegetables’ is used to represent all the spe-
cies on this site (including cotton).

Diurnal measurements of gold coin grass (Lysimachiae Herba) were
also carried out on December 18, 2016 at the Sanya Remote Sensing
Satellite Data Receiving Station (SYS, 18°18′N, 109°18′E) in Hainan
Province, China. The LIDF of this grass was assessed to be close to
planophile by visual inspection.

Details of the multi-species measurements described above are
summarized in Table 3. All the spectral measurements were conducted
using a customized Ocean Optics QE Pro spectrometer (Ocean Optics,
Dunedin, FL, USA), characterized by a FWHM of 0.31 nm, a SSI of
0.155 nm, and a peak signal-to-noise ratio (SNR) higher than 1000. For
more details of the experiments, please refer to Du et al. (2017).

2.2.2. Multi-angular experiments
Due to the influence of the canopy structure (i.e. variable gap

fraction and LIDF), SIF at the canopy level is anisotropic. To test the
performance of the SIF downscaling algorithm, we carried out a series
of multi-angular measurements on a winter wheat canopy during the
springs of 2015 and 2016 at the Xiao Tangshan Farm, Beijing, China,
using a multi-angular observation system (MAOS) (Yan et al., 2012).

Table 1
Main input parameters for the SCOPE simulations.

Parameter Values Unit Description

Cab 20, 40, 60, 80 μg/cm2 Leaf chlorophyll a+ b content
Cdm 0.012 g/cm2 Dry matter content
Cw 0.009 cm Leaf water equivalent layer
N 1.4 – Leaf mesophyll scattering

parameter
LAI 1, 2, 3, 4 m2/m2 Leaf area index
LIDFa 1, −1, 0, 0, −0.35, 0 – Leaf inclination parameter
LIDFb 0, 0, −1, 1, −0.15, 0 – Bimodality parameter
FQE 0.01 – Fluorescence quantum yield

efficiency
SZA 20, 30, 40, 50, 60 Degree Solar zenith angle
VZA 0, 10, 20, 30, 40, 50,

60
Degree View zenith angle

RAA 0, 180 Degree Relative azimuth angle

Table 2
Major input parameters for the DART simulations of maize and spruce canopies.

Parameter Values Unit Description

Cab 58 μg/cm2 Leaf chlorophyll a+ b content
Cdm 0.0037 g/cm2 Dry matter content
Cw 0.0131 cm Leaf water equivalent layer
N 1.518 – Leaf mesophyll scattering

parameter
LAI 4 (maize), 7

(spruce)
m2/m2 Leaf area index

Canopy height 2.25 (maize), 10
(spruce)

m Canopy height

FQE (PSI) 0.002 – Fluorescence quantum yield
efficiency for photosystem I

FQE (PSII) 0.008 – Fluorescence quantum yield
efficiency for photosystem II

SZA 37.94 Degree Solar zenith angle
VZA 15–65 Degree View zenith angle
SAA 311.89 Degree Solar azimuth angle
VAA 0–180 Degree View azimuth angle
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The MAOS consists of a two-dimensional automatic goniometer, a
spectrometer (QE Pro) and a laptop for control. It automatically collects
the canopy radiance at different viewing angles, together with the
downwelling solar irradiance reflected from a reference panel. In this
study, the multi-angular spectral measurements were taken in the solar
principal planes with the view zenith angles ranging from −60° to 60°
with an interval of 10° (a smaller interval of 2° was set around the
hotspot position). The multi-angular measurements of canopy re-
flectance and SIF were carried out under stable sunny weather condi-
tions from 8:00 to 16:30 (local time) during eight days of different
winter wheat growth stages in 2015 and 2016 (as listed in Table 4). It
takes about 7min for each set of multi-angular measurements. In total,
32 sets of valid measurements were acquired.

2.2.3. SIF retrieval
At the canopy level, measured radiance signals comprise the sum of

emitted SIF and reflected solar radiation. Disentangling both compo-
nents is frequently based on the Fraunhofer Line Discrimination (FLD)
principle (Plascyk, 1975). Frequently used algorithms include the 3-
band FLD (3FLD) (Maier et al., 2003), the improved FLD (iFLD) (Alonso
et al., 2008) and the spectral fitting methods (SFM) (Meroni et al.,
2010). According to the analysis by Damm et al. (2011), L. Liu et al.
(2015) and X. Liu et al. (2015), the 3FLD algorithm is relatively simple
and robust for the spectral resolution and SNR of the spectral data ac-
quired by our QE Pro spectrometer. Therefore, we estimated SIF at the
canopy level with the 3FLD algorithm. The selected wavelengths are
757.92 nm, 760.72 nm and 768.87 nm for the O2-A band, and

686.44 nm, 687.09 nm and 688.23 nm for O2-B band (Du et al., 2017).

2.2.4. Estimation of APARchl

According to Eq. (2), SIF emission at photosystem level is closely
related to APAR (more specifically, PAR absorbed by chlorophyll
(APARchl)). APARchl is difficult to measure directly, but is closely re-
lated to the photosynthetically active radiation absorbed by green
leaves (APARgreen) (Du et al., 2017; Porcar-Castell et al., 2014). Liu
et al. (2013) proposed an efficient method for making in-situ mea-
surements of the fraction of APARgreen (fAPARgreen) for a low vegetation
canopy using a digital camera and a reference panel. A color image of
the canopy with the reference panel is first taken by a digital camera at
nadir position. Pixels in the image are then classified into green leaves,
ground litter, sunlit soil, shaded soil, and reference panel.

Fig. 1. Multi-angular SIF at canopy level for maize
and spruce at the far-red (740 nm) and red (687 nm)
bands, as simulated by DART. The labels are the
view azimuth (0°–360°, 0° for the north) and zenith
(0°–90°) angles. The red cross indicates the solar
position (zenith angle: 37.94°; azimuth angle:
311.89°). The incident PAR is 1185.76W/m2, and
the temperature is 300 K. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Parameters of multi-species measurements. Cab stands for leaf chlorophyll a+ b content, LIDF is the leaf inclination distribution function, and Fc is the fraction of
vegetation coverage.

Site Location Date Species Cab (μg/cm2) LIDF Fc

Xiao Tangshan (XTS) 40°11′N
116°27′E

Apr. 8, 9 & 18, Nov. 7, Dec. 8, 2016 Winter wheat 21.22–55.29 Spherical 0.15–0.79

Nanbin Farm (NBF) 18°22′N
109°10′E

Dec. 18, 2016 Vegetables and cotton 15.22–56.68 Planophile 0.28–0.91

Sanya Station (SYS) 18°18′N
109°18′E

Dec. 18, 2016 Gold coin grass 40.83 Planophile 0.67

Table 4
Parameters of multi-angular measurements on winter wheat at Xiao Tangshan
Farm, Beijing, China during the springs of 2015 and 2016.

Date LAI Cab (μg/cm2) SZA (°)

Apr. 3, 2015 1.46 47.9 43.6–54.5
Apr. 13, 2015 1.94 51.5 38.4–57.8
Apr. 24, 2015 2.40 50.0 32.3–47.4
Apr. 25, 2015 2.40 50.0 31.1–62.4
Apr. 18, 2016 2.92 47.5 36.4–61.5
May 3, 2016 1.93 49.3 29.3–50.5
May 4, 2016 1.93 49.3 32.8–60.5
May 17, 2016 1.43 45.6 27.4–47.6
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Consequently, the fAPARgreen could be calculated as:

= − − +fAPAR PAR PAR (APAR APAR )
PARgreen

i r EB CB

i (3)

where PARi and PARr are, respectively, the incident and reflected (in-
cluding all exposed components) PAR derived from the DN values of the
digital image. APAREB and APARCB are the PAR absorbed by the ex-
posed background (EB, including the non-photosynthetic components)
and the vegetation-covered background (CB) respectively.

In the multi-species experiments described in Section 2.2.1, fA-
PARgreen was measured with the digital camera based approach as de-
scribed above. Unfortunately, fAPARgreen was not measured in the
multi-angular experiments (Section 2.2.2). To eliminate the saturation
effect of the normalized difference vegetation index (NDVI), Gitelson
et al. (2014) proposed a wide dynamic range vegetation index
(WDRVI), which has been proved to be well linearly correlated with
fAPARgreen (Viña and Gitelson, 2005). The WDRVI is defined as:

= − +WDRVI (αR R )/(αR R )NIR Red NIR Red (4)

where RNIR and RRed are the reflectances at the near infrared and red
band, respectively, and α is a weighting coefficient with a value of
0.1–0.2 (Gitelson et al., 2014). Fig. 2 shows the relationship between
WDRVI (α=0.1) and fAPARgreen for SCOPE simulations with different
values of the LAI (1–4), leaf chlorophyll content (20–80 μg/cm2), SZA
(20–60°) and three typical leaf inclination distribution functions (pla-
nophile, plagiophile and spherical). Therefore, in the multi-angular
experiments fAPARgreen was estimated using the linear model based on
the WDRVI.

Chlorophyll is the main absorbing compound for PAR in green
leaves (Jacquemoud and Baret, 1990; Porcar-Castell et al., 2014). Ac-
cording to Du et al. (2017), fAPARchl can be approximated from fA-
PARgreen with a linear function:

= ×kfAPAR fAPARchl green (5)

where the coefficient k is related to the leaf chlorophyll content. Ana-
lysis of SCOPE simulations conducted by Du et al. (2017) revealed that
the value of k varies from 0.78 to 0.80 for the leaf chlorophyll content
from 20 to 60 μg/cm2. Since the leaf chlorophyll content of most of the
samples was within the range 20–60 μg/cm2 (except for one sample for
which the value was 15.22 μg/cm2), we estimated fAPARchl using k
equal to 0.79 in this study.

The incident photosynthetically active radiation (PAR) was calcu-
lated using the radiance reflected from a white reference panel mea-
sured by a spectrometer. Consequently, the APARchl can be calculated
as:

= ×APAR PAR fAPARchl chl (6)

2.3. Airborne measurements

The airborne image, used to evaluate the method introduced in this
study, was acquired using the imaging spectrometer HyPlant (Specim,
Oulo, Finland). As an airborne demonstrator for the ESA's Fluorescence
Explorer (FLEX) mission, HyPlant was specifically designed for the
monitoring of vegetation canopy spectral characteristic parameters,
including SIF. There are two modules in HyPlant: the first is the FLUO
module, which is used for the SIF measurements and which covers the
range from 670 nm to 780 nm with a high spectral resolution
(FWHM=0.25 nm); the other module is the DUAL module, which
covers a broader spectral range (380–2500 nm) with a FWHM of ~4 nm
for bands from 380 nm to 970 nm, and of ~13.3 nm for bands from
970 nm to 2500 nm. More technical details about the HyPlant config-
urations and the data processing are available in Rascher et al. (2015).

In this study, we used a HyPlant image acquired at 14:58 (local
time) on June 30, 2015 over the study area located in the Ruhr
catchment in the central western part of North Rhine-Westphalia,
Germany (50.864° N, 6.452° E). The flight height of 600m above
ground and the swath wide of ~400m resulted in a spatial resolution of
1m and view zenith angles from 0° to about 16.7° from the center to the
edges of the swath. The flight heading direction was 345.89°, under the
solar zenith angle of 31.89°, and the solar azimuth angle of 217.52°.

The far-red (760 nm) and red (687 nm) SIF at canopy level were
retrieved using the iFLD method (Alonso et al., 2008). A semi-empirical
technique that made use of SIF-free reference pixels (e.g., bare soil) was
used to empirically account for uncertainties in estimated upward
transmittance of the atmosphere (Damm et al., 2014). For further
technical details of SIF retrieval from the HyPlant image, please refer to
Damm et al. (2014) and Wieneke et al. (2016). fAPARgreen was esti-
mated using the WDRVI-based linear model that was introduced in
Section 2.2.4. As explained in Section 2.2.4, the linear relationship
between fAPARchl and fAPARgreen was assumed also for the HyPlant
image. The missing of information about chlorophyll content made it
difficult to decide a proper coefficient for the fAPARchl - fAPARgreen

relationship, so we did not calculate the fAPARchl for the HyPlant image,
but used the fAPARgreen directly to evaluate the results of SIF down-
scaling.

2.4. Physical analysis of SIF radiation transfer within the canopy

The absorption and scattering of SIF photons within the canopy is
ruled by the same physical interactions as in the case of the reflected
radiation. The difference is only the location of the photons' source. SIF
photons are emitted inside the leaves while, photons of reflected ra-
diation originate from the solar illumination at the top of canopy
(Fig. 3).

Using the concept of recollision probability (so-called ‘p-theory’)
(Stenberg et al., 2016) and assuming that the canopy is bounded un-
derneath by a non-reflecting surface (the ‘black-soil’ condition), the
four probable states of photons originating from solar illumination are
as illustrated in Fig. 3(a) (Smolander and Stenberg, 2005). The canopy
absorptance can be expressed as:

= − + − + −

+ … = −
−

a i ω λ ω λ p ω λ ω λ p ω λ

i ω λ
pω λ

(λ) [(1 ( )) ( ) (1 ( )) ( ) (1 ( ))

] 1 ( )
1 ( )

i L L L L L

L

L

0
2 2

0
(7)

where p is the recollision probability, ωL is the leaf scattering coefficient
(single scattering albedo), and i0 is the canopy interceptance of the
incoming radiation. The canopy scattering can then be expressed as:

= − =
−

−
s i a

p
pω λ

i ω λ(λ) (λ)
1

1 ( )
( )i i

L
L0 0

(8)

Fig. 2. Linear regression of the fraction of photosynthetically active radiation
absorbed by green leaves (fAPARgreen) on the wide dynamic range vegetation
index (WDRVI) computed from SCOPE simulations for canopies with different
leaf area indices, leaf chlorophyll contents and leaf inclination distributions.
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The recollision probability describes the multiple scattering process
within the canopy. To describe the anisotropic escape probability of
photons to leave the canopy, the bi-directional gap fraction, another
spectral invariant, is needed. The term (1− p) can be expressed as the
integrated canopy density over all directions in the unit sphere
(Knyazikhin et al., 2013):

∫− =p ρ μ d1 1
π

(Ω)| | Ω
4π (9)

where ρ(Ω) is the gap fraction for direction Ω, 4π denotes the unit
sphere, and μ is the cosine of the polar angle of Ω. The canopy structure
is the main factor influencing its reflectance anisotropy. According to
Knyazikhin et al. (2011, 2013), the bi-directional reflectance factor
(BRF), representing the canopy scattering in a specific observing di-
rection, can be approximately expressed as:

=
−

ρ
pω λ

i ω λBRF(λ, Ω , Ω )
(Ω , Ω )

1 ( )
( )s v

s v

L
L0

(10)

where ρ(Ωs,Ωv) is the bi-directional gap fraction which contains the
information of canopy structure and the fraction of sunlit and shaded
leaves. Ωs and Ωv are the solar and view directions, respectively.

Similarly, for SIF emission, the probable states of the SIF photons
emitted from leaves are as illustrated in Fig. 3(b). It needs to be noted
that, there is also probability for SIF photons to be absorbed by the soil
without any interactions in the canopy (similar as the state of T0 in
Fig. 3(a)). However, such probability is considered to be very low,
because the SIF photons absorbed by soil directly are most likely from
the bottom leaves, while the illumination on leaves at the bottom of
canopy is usually very low for dense canopy. Additionally, for the red-
band, the downward SIF at leaf level has been proved to be much
weaker than the upward SIF (Van Wittenberghe et al., 2015). Therefore,
the portion of SIF photons directly absorbed by the soil is neglected in
this study. Accordingly, the canopy absorptance of SIF photons can be
expressed as:

= − + − + −

+ …= −
−

a p ω λ ω λ p ω λ ω λ p ω λ

p ω λ
pω λ

(λ) (1 ( )) ( ) (1 ( )) ( ) (1 ( ))
1 ( )

1 ( )

f L L L L L

L

L

2 2 3

(11)

and the canopy scattering of SIF photons as:

= − =
−

−
s

pω λ
(λ) 1 a (λ)

1 p
1 ( )f f

L (12)

The scattering processes for SIF photons and for reflected photons
by canopy elements are similar. Consequently, the SIF escape prob-
ability from leaf level to canopy level (εCL= SIFCanopy/SIFLeaves) in ob-
serving direction Ω can be expressed as:

=
−

ε
ρ
pω λ

(λ, Ω)
(Ω)

1 ( )CL
L (13)

If we substitute Eq. (10) into Eq. (13), then we have,

=ε
i ω λ

(λ, Ω) BRF(λ, Ω)
( )CL

L0 (14)

According to the analysis above, under the ‘black-soil’ condition, the
SIF escape probability from leaf to canopy level is related to the di-
rectional reflectance, the canopy interceptance and the leaf scattering
coefficient. In practice, the directional reflectance can be acquired
concurrently with the SIF measurements, but canopy interceptance and
leaf scattering coefficients cannot, in general, be accurately estimated.
The canopy interceptance is driven by the canopy structure and the
actual solar position. If the clumping effect is assumed to be of minor
impact, the canopy interceptance can be expressed as (Chen and Black,
1992; Ross, 2012):

⎜ ⎟= − ⎛
⎝

− ∙ ⎞
⎠

i G θ LAI
θ

1 exp ( )
cos( )0

(15)

where θ is the SZA and G(θ) is the mean projection coefficient for fo-
liages on a plane perpendicular to θ. The function, G, is determined by
the LIDF. For the spherical leaf inclination distribution type with an
LIDF that is a sine function, the value of G is 0.5 and is independent of
θ. For other values of the LIDF, the value of G ranges from 0 to 1 when θ
varies from 0° to 90°, and generally converges to 0.5 when θ is ap-
proximately 57.3° for all LIDF types (Nilson, 1971; Ross, 2012; Ryu
et al., 2010). G(θ) ∙ LAI represents the projected LAI in the solar direc-
tion.

Fig. 4 shows the values of i0 for different values of G, LAI and SZA.
For a dense canopy with large values of LAI and G, the value of i0 is
close to 1, while for sparse canopies, the value of i0 shows a large degree
of variability.

Since absorption by chlorophyll a molecules is very weak at the far-
red band, leaf single scattering albedo (ωL) is strongly influenced by
chlorophyll content only in the red wavelengths of SIF emission. ωLat
the far-red band is, therefore, almost independent of chlorophyll con-
tent and it is driven by a minor absorptance of leaf tissue biochemical
compounds. Fig. 5 shows the variations of ωL at the far-red (760 nm)
and red (687 nm) bands simulated by the Fluspect model for leaf
chlorophyll content from 10 to 80 μg/cm2. As expected, the value of ωL

at the far-red band is almost invariant, reaching values between 0.853
and 0.888, while it varies from 0.044 to 0.287 for the red band, where
the absorption by chlorophyll is strong. It exhibits a large variation in
the value of ωL, especially for the chlorophyll content lower than 40 μg/
cm2.

Another fact needs to be noted is, the spectral invariant theory ig-
nores the difference between the leaf reflectance and leaf transmittance
(combined as ωL). Therefore, the spectral invariant theory performs
well at the far-red band, where multi-scattering dominates, but not so
well at the red band, where single scattering dominates. Nevertheless,
the εCL and i ω

BRF
L0
are still proportional at the red band (Yang and Van der

Tol, 2018). This problem is discussed in Section 4.4.
The escape probability for SIF from the PS level to the leaf level

Fig. 3. An illustration of the canopy absorption and
scattering model for solar illumination (a) and SIF
emission (b) assuming with non-reflecting soil back-
ground. State T0 represents photons that go through the
canopy without interacting with the canopy or being
absorbed by the soil; state I represents photons that in-
teract with the canopy; state A represents photons ab-
sorbed by the canopy; and state E represents photons that
escape from the canopy. p is the recollision probability,
ωL is the leaf scattering coefficient (single scattering al-
bedo), i0 is the canopy interceptance of the incoming
radiation, which means the probability of an incident
photon that will be intercepted by the canopy, and t0 is
the probability that a photon can pass through the ca-
nopy without any interactions (t0= 1− i0).
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(εLP=SIFLeaves/SIFPS) is related to the leaf internal absorptance (from
the photosystems to the leaf surface). The leaf internal absorptance at
the spectral range of the SIF emission is caused mainly by the leaf
chlorophyll content, but the relationship is non-linear, because the in-
crement in radiation absorption per unit of chlorophyll decreases at
high chlorophyll content (Adams et al., 1990; Gitelson et al., 1998;
Porcar-Castell et al., 2014). Besides, chlorophyll molecules are dis-
tributed in different cell layers of leaf mesophyll tissues. Although the
radiative transfer processes at the molecular-level are complex for ac-
curate modelling, εLP can be expressed as a non-linear function of the
chlorophyll content (Cab) and wavelength as:

≈ε f(λ) (Cab, λ)LP (16)

Consequently, the SIF escape probability from the PS level to the
canopy level (εCP) can be expressed as:

= ∙ ≈ ∙ε ε ε f
i ω λ

(λ, Ω) (λ) (λ) (Cab, λ) BRF(λ, Ω)
( )CP LP CL

L0 (17)

To summarize, the SIF escape probability from the PS level to the
canopy level can be approximately modeled using the canopy BRF,
canopy interceptance and Cab, under the assumption of ‘black-soil’
condition. For remote sensing observations, the directional reflectance
is available. However, the i0 and ωL is not easy to be accurately mea-
sured or estimated. According to Eq. (15) and Fig. 4, i0 is related to

canopy structure, which is not easy to be accurately retrieved with
optical remote sensing approaches. It is not possible to observe leaf
reflectance and transmittance directly at canopy level, and ωL varies
among different leaves. So ωL is also difficult to be estimated from re-
mote sensing observations at canopy level. But for a dense canopy and
for leaves with a relatively high value of Cab, i0 and ωL are relatively
stable, and the directional reflectance is the main factor that influences
εCP, especially at the far-red band.

2.5. Estimation of εCP and εCL using the random forest approach

Given the difficulties involved in acquiring the parameters required
for physical modelling of the SIF downscaling, a statistical model based
on the Random Forest (RF) regression, which is one of the most effec-
tive machine learning models for predictive analytical approaches
(Breiman, 2001), was trained on the dataset simulated in SCOPE to
estimate εCP.

As shown in Section 2.4, the BRF has significant impact on εCP.
Taking all other factors together as fCP, Eq. (17) can be modified thus:

= ∙ε f(λ, Ω ) BRF(λ, Ω)CP CP (18)

where fCP is the ratio of εCP to BRF. In the SCOPE simulations, εCP(λ,Ω)
and BRF(λ,Ω) can be simulated directly, and fCP later calculated. As fCP
is acquired from SCOPE simulation instead of physical analysis, the
assumption of ‘black-soil’ condition for Eq. (17) is no longer needed
here. Similarly, εCL can be expressed as,

= ∙ε f(λ, Ω) BRF(λ, Ω)CL CL (19)

We only estimated fCP or fCL with the random forest approach to
increase robustness of estimated εCP and εCL. Directional reflectance
was obtained from measurements or simulations. fCP and fCL are mainly
related to the leaf scattering coefficient and canopy structure. These
kinds of information can be derived from directional reflectance at
different bands and from various vegetation indices.

At the near infrared band, the canopy reflectance is dominated by
the scattering effect, which primarily originates from the leaf and ca-
nopy structure. At the red band, the canopy reflectance is dominated by
the absorption effect of chlorophyll pigments (Colwell, 1974; Sims and
Gamon, 2002). It has been demonstrated that the red-edge band is
important for the estimation of Cab as it is less impacted by the ab-
sorption saturation effect for a high Cab than the red band (Clevers and
Gitelson, 2013; Dash and Curran, 2004; Gitelson et al., 2005;
Malenovský et al., 2013). Several vegetation indices (VIs), based on the
reflectance at the red, red-edge and near infrared bands, have been
developed for the retrieval of vegetation parameters. In this study, the
NDVI, simple ratio (SR) and the MERIS terrestrial chlorophyll index
(MTCI) were used (formulae and references in Table 5). Considering the
possible available wavelength range of spectral measurements for SIF

Fig. 4. Values of the canopy interceptance of the incoming radiation (i0) for different G function values, leaf area index (LAI) and solar zenith angle (SZA) com-
binations, calculated using Eq. (15). G function is the mean projection coefficient for foliages on a plane perpendicular to the solar zenith direction.

Fig. 5. Values of ωL at the far-red (760 nm) and red (687 nm) bands simulated
by the Fluspect model for different values of the leaf chlorophyll content. The
values for other input parameters for the Fluspect model were set as default
(same as in Table 1). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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retrieval, and to avoid the SIF in-filling effect at the oxygen absorption
bands at about 687 nm and 760 nm, we selected 685 nm as the red
band, 710 nm as the red-edge band, and 758 nm as the near infrared
band for the calculation of the VIs. The NDVI is sensitive to the canopy
structural parameters such as LAI (Soudani et al., 2012). The SR is
sensitive to the chlorophyll absorption at the red band. Finally, MTCI
was designed for estimation of the chlorophyll content (Dash and
Curran, 2004). Consequently, NDVI, SR and MTCI, together with the
canopy directional reflectance at 685 nm, 710 nm and 758 nm, were
selected as the potential input variables to establish the RF regression.
The scatter matrix of the relationships among the potential input
variables and fCP is provided in the Supplementary materials (Fig. S1).
The final selection of inputs was decided by testing the performance of
RF regression with different combinations of the six potential variables,
which is shown in Section 3.1.

500 decision trees were used to construct the RF model, and the
minimum number of terminal nodes were set as 5. The SCOPE simu-
lations (cf., Section 2.1.1), which cover most common vegetation con-
ditions, were employed for the training of the RF. SIF of the red
(687 nm) and far-red (760 nm) bands at canopy, leaf, and PS levels
were simulated by the SCOPE model, together with the directional re-
flectance at 685 nm, 710 nm and 758 nm. Consequently, fCP and fCL
could be calculated according to Eqs. (18) and (19), respectively.

3. Results

3.1. Selection of the inputs for the RF regression

To optimize the inputs for the RF regression, we tested the perfor-
mance of the RF model with different combinations of the six potential
input parameters explained in Section 2.5. Firstly, all the six potential
parameters were used as the inputs for the RF regression to calculate
their relative importance using the mean decrease accuracy (MDA)
method based on the concept of out-of-bag (OOB) error. The OOB error
is a parameter that represents the RF prediction error. It is considered as
the mean prediction error on each training sample xᵢ, which uses only
the trees that did not have xᵢ in their bootstrap sample (Breiman, 2001).
To measure the importance of the j-th feature for training, the values of
the j-th feature are permuted among the training data and the OOB
error is computed for each perturbed data set. The importance score for
the j-th feature is computed by averaging the difference in the OOB
error before and after the permutation over all trees. Fig. 6 shows the
relative importance of the input variables of the RF model for SIF
downscaling from canopy level to leaf level or PS level. These results
indicate that the far-red directional reflectance and MTCI were found as
the most important variables for the SIF downscaling model at both the
far-red and red bands, while the importance of the directional re-
flectance at the red and red-edge bands, the NDVI, and the SR was on
similar, lower level.

Secondly, the performance of the RF model was tested with different
combinations of input parameters. 2/3 of the SCOPE simulations were
randomly selected to train the RF model, and the remaining 1/3 were
used as reference samples to evaluate the performance of the trained
model with the relative root-mean-square error with respect to mean
value (RRMSE) and the coefficient of determination (R2). To reduce the
random errors, for each combination of input parameters, 30 RF models

were trained and the RRMSE and R2 were averaged. The results are
listed in Table 6. In addition, a significance test was also carried out for
further comparing the performance of different combinations of input
parameters (shown in Table S1). For the far-red band, when four
parameters (R758, MTCI, R685, R710) were used, the RRMSE and R2

became relatively stable, and the difference comparing with using all
six parameters became insignificant (the p-value is 0.273 and 0.335 for
leaf level and PS level, respectively). When adding more input para-
meters (SR and NDVI), the variation of RRMSE was< 0.5%. For the red
band, in contrast, the difference between the performance of using four
input parameters (R758, MTCI, R685, R710) and using all six parameters
was still significant for both leaf level and PS level (p-value < 10−9,
see Table S1). When adding SR or NDVI as the input parameters, the
RRMSE of the RF model was improved clearly (the RRMSE was reduced
about 10% for the leaf level and about 6% for the PS level). But the
performance of the RF model had no significant improvement when
using both SR and NDVI (p-values > 0.300, see Table S1). The results
also indicated that, although the vegetation indices can be calculated
using the reflectance at the three wavelengths, they can still provide
important information for the estimation of fCL and fCP, because vege-
tation indices are able to enhance some information by non-linearly
combining the reflectance at different wavelengths, and the special
non-linear relationship may be difficult for the RF regression to find
out.

According to the results, R758, MTCI, R685, and R710 were selected as
the input parameters of the RF model for the estimation of fCL and fCP at
the far-red band, while R758, MTCI, R685, R710, and SR were selected for
the red band.

3.2. Evaluation of the SIF downscaling accuracy using SCOPE and DART
simulations

SCOPE and DART based simulations were used in the first instance
to quantitatively evaluate the performance of the RF approach for SIF
downscaling. SCOPE allows simulating SIF values at the canopy, leaf,
and PS levels, but there is no module for SIF simulation at PS level in
DART, so the DART model is only able to provide the SIF values at the
canopy and leaf levels.

The SCOPE simulations were first used for accuracy assessments at
the leaf and PS levels. 2/3 of the SCOPE simulations were randomly
selected to train the RF model, and the remaining 1/3 was used for
validation. Fig. 7 shows a comparison of the far-red and red SIF esti-
mated by the RF approach with the reference SIF simulated by SCOPE
for the leaf and PS levels. In general, the estimated values of SIF at the

Table 5
Mathematical formulations and references for the Vis (R758, R685 and R710 stand
for the directional reflectance at 758 nm, 685 nm and 710 nm, respectively).

Equation Reference

NDVI= (R758− R685) / (R758+R685) (Rouse et al., 1973)
SR=R758 / R685 (Jordan, 1969)
MTCI= (R758− R710) / (R710− R685) (Dash and Curran, 2004)

Fig. 6. Relative importance of input variables of the RF model for SIF down-
scaling from canopy level to leaf level or PS level. R758, R685 and R710 stand for
the directional reflectance at 758 nm, 685 nm and 710 nm, respectively.
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leaf and PS levels matched well with the reference values. Most of the
points were located near to the 1:1 line, and the values of the coefficient
of determination (R2) were higher or close to 0.9. The estimation of red
SIF at the PS level was not as robust as that of the far-red SIF, but the
root-mean-square error (RMSE) was still as low as 3.613mW/m2/nm,
resulting in the relative root-mean-square error (RRMSE) of 7.299%.
The relationship of SIF at canopy level and leaf level, SIF at leaf level
and PS level, SIF at canopy level and PS level from SCOPE simulations
are also provided in the Supplementary materials (Fig. S2) for com-
parisons.

Simulations performed in the 3-D DART model (cf., Section 2.1.2)
were used for further evaluation of the RF model trained by the SCOPE
simulations. Since DART produced canopy and leaf SIF simulations for

two modeled canopies of maize and spruce, only the downscaling of SIF
from the canopy level to the leaf level could be evaluated. Fig. 8 shows
SIF simulated by DART at canopy and leaf level vs. estimates of
downscaled SIF. The leaf SIF estimates for the maize canopy were more
robust (less variable) for the spruce canopy, but the downscaled esti-
mates matched well the reference values in both cases. The RRMSE
between the estimated and reference far-red and red leaf SIF was 7.42%
and 12.10% for the maize canopy, and 7.57% and 25.92% for the
spruce canopy.

The evaluation carried out on datasets simulated by two different
radiative transfer models using different vegetation representations and
solar-viewing geometries revealed accurate and robust performance of
the RF downscaling approach, especially for the far-red SIF. The lower

Table 6
The relative root-mean-square error (RRMSE) and the coefficient of determination (R2) of RF models for the ratios of SIF escape probability to BRF (fCL for leaf level to
canopy level and fCP for photosystem level to canopy level) at far-red and red bands with different combinations of input parameters.

Input parameters fCL (Far-red) fCP (Far-red) fCL(Red) fCP (Red)

RRMSE R2 RRMSE R2 RRMSE R2 RRMSE R2

R758, R710, R685 0.0492 0.871 0.0569 0.901 0.0981 0.960 0.0942 0.954
R758, MTCI, R685 0.0463 0.886 0.0502 0.928 0.0990 0.961 0.0969 0.957
R758, MTCI, R685, R710 0.0462 0.886 0.0489 0.931 0.0871 0.964 0.0849 0.961
R758, MTCI, R685, R710, SR 0.0461 0.887 0.0487 0.931 0.0804 0.968 0.0797 0.964
R758, MTCI, R685, R710, NDVI 0.0463 0.886 0.0488 0.930 0.0800 0.969 0.0797 0.964
R758, MTCI, R685, R710, SR, NDVI 0.0461 0.887 0.0487 0.931 0.0799 0.969 0.0795 0.966
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Fig. 7. Comparison of far-red (760 nm) and red (687 nm) SIF estimated by the RF approach with reference SIF simulated by SCOPE for leaf and PS levels. R2 is the
coefficient of determination, and RMSE is the root-mean-square error. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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accuracy for the red band is discussed in Section 4.4.

3.3. Evaluation of SIF downscaling through in-situ multi-species experiments

Under conditions with no stress and with high light, the SIF yield
varies little (Van der Tol et al., 2014; Damm et al., 2015a), so the total
SIF emission of a plant at PS level is strongly related to APARchl.
However, SIF at the canopy level is strongly influenced by re-absorption
and scattering effects, which are related to leaf pigments and the ca-
nopy structure. Therefore, we compared APARchl measured for multi-
species canopies of different structures with SIF downscaled to PS level
with the RF approach (cf., Section 2.2.1).

Fig. 9 shows the relationship between APARchl and nadir-observed
canopy SIF, SIF at leaf level and SIF at PS level estimated by the RF
approach. The relationship between APARchl and SIFCanopy varied for
different species, while the slope of the linear regression lines of the SIF-
APARchl models for different species became closer to each other when
SIF was downscaled from canopy level to PS level, which indicated that
the relationship between APARchl and SIFPS was less species-dependent.
At the far-red band, the values of R2 increased significantly when SIF
was downscaled from canopy level to leaf level, but did not vary much
(decreased a little) when SIF was further downscaled to the PS level.
Differently, at the red band, the R2 for the PS level was much higher
than that for the leaf level.

The linear regression models of the SIF-APARchl relationship for
different species at canopy, leaf and PS levels were summarized in
Table 7, and the coefficients of variation (CV) of the slopes for different
species at each level were also calculated. For grass and wheat, the
relationships between SIF at all levels and APAR were close to linear.
But for the vegetation, the relationship was some erratic, especially at
the red band. The reason may partly due to the measurement errors. For
both the far-red and red bands, the CV of slopes for different species
decreased significantly when SIF was downscaled from canopy level to
leaf or PS level. At the far-red band, both the CV of slopes and the R2 of
each model at the PS level were very close to that at the leaf level. At
the red band, the CV of slopes at the PS level was some higher than that
for the leaf level, but the R2 of the regression model for all the three

species were higher than that at the leaf level, especially for the model
of the vegetables (increased from 0.1964 to 0.4455 when SIF was
downscaled from leaf level to PS level).

The results shown in Fig. 9 and Table 7 confirmed that the species-
dependency of the SIF-APARchl relationship could be reduced by SIF
downscaling from canopy level to leaf or PS level. These results also
indicated that the canopy structure is the main factor influencing the
far-red SIF escape probability, while the leaf internal absorption mainly
influence the red SIF.

3.4. Evaluation of SIF downscaling using multi-angular experiments

The SIF emission at the PS level can be regarded as isotropic
whereas, due to re-absorption and scattering within the canopy, the
observed SIF at the canopy level is obviously anisotropic. Consequently,
multi-angular measurements of a winter wheat canopy (cf., Section
2.2.2) were used for further evaluation of the SIF downscaling ap-
proach, in particular its potential to normalize the anisotropy in the SIF
measurements.

Fig. 10 shows the relationship between APARchl and values of the
multi-angular observed SIF at canopy level, leaf level or PS level in the
form of boxplots. The APARchl values were divided into groups with an
interval of 5W/m2. Moreover, for each set of multi-angular observa-
tions (with different VZAs in the solar principal plane), we calculated
the coefficients of variation (CV) of SIF at canopy level, leaf level or PS
level, as shown in Fig. 11. Lower CV values indicated less anisotropy of
SIF. The results shown in Figs. 10 and 11 demonstrate that, for each
APARchl level, SIF at canopy level varied substantially at both the far-
red and red bands due to its anisotropic characteristics caused by the
scattering within the canopy. Computed CV values varied from 0.12 to
0.32 for the far-red band, and from 0.33 to 0.61 for the red band. The
value of R2 for the relationship between SIFCanopy and APARchl is 0.43
and 0.09 for the far-red band and the red band, respectively. The es-
timated SIF at the leaf level and PS level was much more closely related
to APARchl and the variation of SIF in predefined APARchl level was
visibly reduced. At the far-red band, the value of R2 for the relationship
between SIFPS and APARchl was 0.76, and the values of CV for SIFPS
varied from 0.04 to 0.18. At the red band, there were some outliers in
the boxplot which indicates a less robust performance of the SIF
downscaling. Overall, the value of R2 for the relationship between SIFPS
and APARchl was 0.14, and the values of CV for SIFPS for most sets of
multi-angular observations were also reduced and lie within the range
0.14 to 0.42. The results for SIF downscaling to leaf level and to PS level
were very similar, because the leaf absorptance did not vary a lot (the
chlorophyll contents for all the samples were very similar as shown in
Table 4). The results also confirmed the assumption that the SIF emis-
sion at both leaf level and PS level is isotropic.

3.5. Downscaling of canopy SIF retrieved from HyPlant image

Besides the ground-based measurements, in this study, a HyPlant
image was also employed for the evaluation of the SIF downscaling
results. Before application of SIF downscaling, the original pixel size of
the HyPlant was reduced from 1m×1m to 5m×5m in order to re-
duce the influence of sensor noise.

Next to the true color composite of the HyPlant image, Fig. 13 shows
fAPARgreen, canopy SIF retrieved by the iFLD method, and SIF at leaf
and PS levels as estimated by the RF approach for both far-red and red
bands. In Fig. 12, an obvious variation in the value of εCP for the dif-
ferent fields can be seen. As an example, Field A (witer wheat) and Field
B (potato) feature similar levels of fAPARgreen and SIFPS but their
SIFCanopy were quite different, which indicated significant differences in
their canopy structure (see the color of Field A and Field B in the true
color image in Fig. 12). Their different relationships between fA-
PARgreen and SIFCanopy could be attributed to the differences in εCP.
Moreover, the HyPlant results also demonstrated that the SIF anisotropy

Fig. 8. Boxplot of far-red (740 nm) and red (687 nm) SIF simulated by DART for
maize and spruce canopies and corresponding downscaled leaf SIF using the
Random Forest (RF) model. The orange dashed line shows the reference values
of SIF at leaf level, as simulated in DART by Fluspect. The bottom and top of
each box represent the first and third quartiles, respectively, the thick hor-
izontal line in the box is the median, the whiskers show the maximum/
minimum values within 1.5 times the interquartile range (IQR, the difference
between the third and the first quartiles), and the circles show the outliers out
of 1.5IQR. The units of mW/m2/nm/sr were applied to SIF at canopy level as
well as leaf level to make the values comparable. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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Fig. 9. The relationship between APARchl and canopy SIF observed at nadir (a, b), SIF at leaf level (c, d) and PS level (e, f) estimated by the RF approach for several
different species (grass, various vegetables and wheat). The colored dash lines are the linear regression lines for specific species. The black solid lines and the
equations are the linear regression lines and models for all the samples.

Table 7
Linear regression models of the SIF-APARchl relationship for different species at canopy, leaf and photosystem (PS) levels. The ‘CV of slopes’ are the coefficients of
variation of the slopes for different species at specific levels.

Band Level Grass Vegetables Wheat CV of slopes

Far-red Canopy y=0.0065x+0.122
R2= 0.7873

y=0.017x− 0.5606
R2= 0.7078

y=0.005x+0.0213
R2= 0.9182

0.688

Leaf y=0.0423x+0.468
R2= 0.8567

y=0.0778x− 2.3764
R2= 0.6803

y=0.0352x+0.1319
R2= 0.9292

0.441

PS y=0.0634x+0.8884
R2= 0.8786

y=0.1108x− 3.0645
R2= 0.6122

y=0.0495x+0.6585
R2= 0.9227

0.431

Red Canopy y=0.0035x+0.1653
R2= 0.7068

y=0.0074x+0.0417
R2= 0.4672

y=0.0033x+0.0056
R2= 0.8232

0.488

Leaf y=0.0336x+0.9976
R2= 0.7621

y=0.0444x+0.9485
R2= 0.1964

y=0.0292x+0.4097
R2= 0.6182

0.219

PS y=0.3808x+10.094
R2= 0.7719

y=0.5914x+1.3347
R2= 0.4455

y=0.358x+1.031
R2= 0.6831

0.290
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at canopy level was efficiently corrected after the downscaling. For
example, as shown in the image, despite a relative spatial visual
homogeneity of Field C (see the true color image in Fig. 12), the map of
SIFCanopy showed a systematically increasing trend from west to east.

The view zenith angle for HyPlant varied from −16.7° to ~ 16.7° for
pixels from the left to the right of the swath and so this variation in
SIFCanopy within a homogeneous field may be related to SIF anisotropy.
In contrast, the value of SIFPS in this field was much more

Fig. 10. The relationship between APARchl and multi-angular observations of SIF at canopy level (a, b) and estimated SIF at leaf level (c, d) or PS level (e, f) by the RF
approach. The bottom and top of the boxes correspond to the first and third quartiles, the thick horizontal line in each box is the median, the whiskers show the
maximum/minimum values within 1.5 IQR, and the circles show the outliers that lie outside 1.5 IQR. The multi-angular observations were conducted on a wheat
canopy. The averaged number of observations per APAR interval is 49.

Fig. 11. The coefficients of variation (CV) of the observed canopy SIF and leaf or PS SIF estimated by the RF approach for each set of multi-angular observations in
the solar principal plane. Each sample was calculated using a set of multi-angular observations taken within 7min and the SIF at PS level was expected to be constant.
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homogeneous.
Relationship between fAPARgreen and SIF at canopy, leaf or PS level

extracted from the HyPlant image vegetation pixels were presented in
Fig. 13. Although the spatial resolution of the HyPlant image was re-
duced from 1m to 5m, the SIF images still appear noisy, especially for
the red band. To further reduce the noise influence, we aggregated
image pixels into 50m×50m bins, in which the fAPARgreen and SIF
values were averaged (the scatter plots for the 5m×5m images are
available in the Supplementary materials (Fig. S3)). Since the HyPlant
image used in this study was acquired within 1min and the study area

was flat, the PAR was expected to be constant for all pixels. The graphs
showed a stronger and more linear relationship between SIFPS and fA-
PARgreen than between SIFCanopy and fAPARgreen for both the far-red
band and the red band. The downscaling of SIF from canopy to PS level
using the RF approach has increased the value of R2 for the linear re-
lationship between SIF and fAPARgreen from 0.347 to 0.440 at the far-
red band, and from 0.056 to 0.181 at the red band. For the far-red band,
values of R2 for the leaf level and PS level were very similar, while for
the red band, the value of R2 for the PS level was higher than that for
the leaf level.

Fig. 12. True color composited HyPlant image and values of fAPARgreen, SIF at canopy level (retrieved using the iFLD method), SIF at leaf level and PS level
(estimated using the RF approach) at both the far-red (760 nm) and red (687 nm) bands. The image was acquired at 14:58 (local time) on June 30, 2015 over the
study area located in the Ruhr catchment in the central western part of North Rhine-Westphalia, Germany (50.864° N, 6.452° E). The flight height was 600m above
ground. The species in the fields labeled as “A”, “B” and “C” in the true color image are winter wheat, potato and sugar beet, respectively. The three fields are selected
as examples for further analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

4.1. Downscaling of SIF for the correction of SIF anisotropy

The observed SIF anisotropy at the canopy level is due to the re-
absorption and scattering effects within the canopy. Guanter et al.
(2012) and Joiner et al. (2012) reported the influence of the sun-view
geometry on satellite remotely sensed SIF. Since the upwelling radiative
transfer process from leaf level to canopy level for SIF emission is si-
milar to that of reflected radiation, one can assume that SIF anisotropy
is similar to that of reflectance (Liu et al., 2016).

According to the physical analysis of the SIF radiative transfer
within the canopy conducted in this study, which was neglecting the
influence of soil reflectance (is applicable for dense canopies), the SIF
anisotropy at canopy level can be normalized by the BRF as expressed
by Eq. (14), which is consistent with Liu et al. (2016). Multi-angular
measurements of a winter wheat canopy were used in the evaluation of
the SIF downscaling (Figs. 11 and 12). The results showed that, after the

downscaling process, the difference in the values of SIF observed at
different VZAs was reduced effectively. Similarly, in the HyPlant image,
due to the variation of view zenith angle, SIF at canopy level showed
obvious differences between the center and edges of the swath, while
SIF at PS level was more homogeneous within each field.

Pinto et al. (2017) showed the angular distribution of SIF emission
of a sugar beet canopy which consistent with our DART simulations
shown in Fig. 1, and they pointed out that the directional SIF emission
is related to the canopy structure. He et al. (2017) developed a model to
normalize the remotely sensed SIF to the hot spot direction by quan-
tifying the fraction of sunlit and shaded leaves in the field of view, and
consequently, the total SIF at canopy level could be estimated as a
weighted sum of SIF from sunlit and shaded leaves. They reported that
the calculated total SIF was better related with the simulated total GPP
than the original SIF observation. According to these relevant studies,
the demonstrated SIF directional correction is especially important for
long-term, ground-based or satellite-based observations of SIF time
series as the sun-view geometry has a big influence on the SIF values

Fig. 13. Relationship between fAPARgreen and SIF at canopy level, leaf level and PS level retrieved from the HyPlant image. Non-vegetation pixels were excluded. In
order to reduce the propagation of noise, each point represents the averaged pixel value in a 50m×50m window.
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(Guanter et al., 2012; Joiner et al., 2012; Liu et al., 2016; He et al.,
2017; Pinto et al., 2017). The downscaling approach proposed in this
paper presents a practical method of reducing the anisotropy of SIF
emissions, which consequently enables less biased understanding of the
SIF information at canopy level.

4.2. Improvements of APAR estimation by SIF downscaling

APAR is a bridge linking SIF to GPP (Berry et al., 2012; Porcar-
Castell et al., 2014). Besides the SIF anisotropy at the canopy level, the
SIF-APAR relationship also depends on the canopy components and
structures.

Du et al. (2017) studied the response of SIF to APARchl using a si-
mulated dataset and ground measurements, and found that the re-
lationship between SIFCanopy and APARchl is highly dependent on the
canopy structure and chlorophyll content, especially for the red band.
Our study pointed out that corrections for the re-absorption and scat-
tering that affects the SIF transfer from the PS level to canopy level is
important for linking SIFCanopy to APARchl. The study by Guanter et al.
(2014) also found that there are differences between SIF-GPP models
relationships for US croplands and European grasslands. According to
the multi-species experiments used in our study (Fig. 10), the RF-based
downscaling of SIF is efficient to reduce the influence of the re-ab-
sorption and scattering effects within the canopy, and to reduce the
species-dependency of the SIF-APARchl models.

Wieneke et al. (2016) analyzed the value of Fyield at canopy level
(SIFCanopy/APAR) for different agricultural fields captured in a HyPlant
image, and found that Fyield varied with the crop type and with the time
of image acquisition, i.e., the solar zenith and azimuth angles. The
reason could be partly related to the re-absorption and scattering of SIF
within the canopy. The results that we obtained using the HyPlant
image further support the idea that SIF downscaling from canopy level
to PS level can help to achieve more stable and reliable SIF-based APAR
models.

4.3. The variation of SIF spectral shape at canopy, leaf and PS levels

Apart from the intensity of single-wavelength SIF, the spectral shape
of SIF also contains important information (L. Liu et al., 2015; X. Liu
et al., 2015). The two photosystems, PS I and PS II, contribute differ-
ently to the SIF emission. The PS II is responsible for the SIF emission at
both the red and far-red bands, while the PS I only contributes to the
far-red SIF emission and has a much smaller yield (Pfündel, 1998; Agati
et al., 2000). Therefore, the spectral shape of SIF is related to the energy
distribution between PS I and PS II (Porcar-Castell et al., 2014). How-
ever, as the within-canopy re-absorption and scattering effects on SIF
are quite different for the red band and the far-red band, the spectral
shape of SIF at canopy, leaf and PS levels varies significantly (Fournier
et al., 2012; Moya et al., 2006; Porcar-Castell et al., 2014). Romero
et al. (2018) developed a model based on the canopy reflectance, ca-
nopy transmittance and soil reflectance to retrieve the spectral shape of
fluorescence emission at leaf level from the observed fluorescence at
canopy level. Ramos and Lagorio (2004) proposed a physical model to
obtain the fluorescence spectra at PS level by combining the leaf
fluorescence emission and leaf reflectance. Based on the two studies
above, it is possible to retrieve the SIF spectral shape at PS level from
SIF observation at canopy level, but the absolute intensity of SIF
emission at leaf level or PS level is not available.

In this paper, although we focused on the SIF downscaling at two
spectrally narrow bands instead of full-wavelength, it is still possible to
see the variation of SIF spectral shape at canopy, leaf and PS levels
using the ratio of far-red and red SIF. For the wheat canopy introduced
in the multi-species experiment, the averaged ratios of SIF at the far-red
band (760 nm) and red band (687 nm) are 1.63, 1.17 and 0.17 for the
canopy level, leaf level and PS level, respectively. The significant de-
crease of the SIF ratios results from a much stronger re-absorption effect

at the red band. The results are consistent with the Fig. 8 in Romero
et al. (2018).

4.4. Reliability of this study

A practical solution based on RF regression was proposed to over-
come the difficulties in the physical approach for SIF downscaling from
canopy level to PS level. As an efficient machine learning algorithm, the
RF regression model is able to give accurate prediction of parameters if
it is properly trained. The RF model is made up of a large number of
decision trees. Each decision tree is independently grown on a bootstrap
sample, and hence, the trees are weakly correlated. Therefore, the risk
of overfitting the training dataset, which is a significant problem for
many machine learning algorithms, can be reduced (Abdel-Rahman
et al., 2013). The RF model is a black box and is totally reliant on the
training dataset, which may reduce its robustness and applicability
under certain conditions. For comparison, a simple multiple linear re-
gression (MLR) method was also tested using the SCOPE simulation, but
the results (Fig. S4 in the Supplementary materials) were much worse
than the RF model (as shown in Fig. 7), which confirmed that the RF
model was more efficient to estimate the SIF escape probability based
on the information from reflectance.

A physical analysis based on the spectral invariant theory was car-
ried out to improve the robustness of the SIF downscaling model and
find out the most important variables. However, there are some lim-
itations remaining in using the spectral invariant theory. In the spectral
invariant theory, the leaf reflectance and transmittance are combined as
the leaf single scattering albedo. In other words, the different transfer
processes of the photons scattered downwards and upwards by leaves
were ignored. Yang and Van der Tol (2018) analyzed the radiative
transfer of incident light and emitted SIF considering the leaf re-
flectance and transmittance separately and got the same equation as Eq.
(14). But they pointed out that the equation was not valid for the red
band due to the difference between the leaf reflectance and transmit-
tance. At the far-red band, the influence of the difference of leaf re-
flectance and transmittance becomes relatively small with the in-
creasing interaction order. At the red band, however, the difference of
leaf reflectance and transmittance is not ignorable because the single
scattering dominates. Nevertheless, Yang and Van der Tol (2018) also
found that the εCL and

i ω
BRF

L0
were still proportional at the red band for

individual leaves, but the slope of the relationship was influenced by
the leaf structure and pigment composition. In our study, we did not
rely on the physical analysis for SIF downscaling, but only used the
spectral invariant theory to find out the key parameters to estimate the
SIF escape probability. Therefore, the results of this study were not
directly influenced by the limitations of the spectral invariant theory,
and the SIF downscaling at the red band was still reasonable and valid,
although the accuracy was lower than that at the far-red band.

We used different data stemming from models, field and airborne
observations to assess reliability of our approach. Although we could
demonstrate consistency of downscaling results across levels and ex-
periments, particularly results obtained from HyPlant data were less
clear compared to modelling results. This is expected and related to the
wealth of factors determining real measurements. Further, the atmo-
spheric correction of airborne measured radiance data to retrieve sur-
face reflectance and eventually calculate vegetation products such as
fAPAR is a highly complex task. Particularly canopy structure can in-
troduce uncertainties in estimated irradiance due to varying fractions of
diffuse and direct irradiance components, thus causing errors in re-
trieved vegetation products (Damm et al., 2015b).

Other assumptions applied might also limit the scope of our ana-
lysis. i) The training dataset was simulated with the SCOPE model.
SCOPE provides relatively reliable simulations of SIF at PS, leaf and
canopy levels, and has been widely used in studies dealing with SIF
(Damm et al., 2015a, Verrelst et al., 2016). However, SCOPE is a 1-D
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model and its simulations may only be reliable for canopies with a
relatively simple structure, such as crops and grass, and not for more
complicated canopies such as forest. The clumping effect was also ne-
glected in the physical analysis. The performance of the proposed
method for the cases across canopies still needs to be further tested. ii)
The estimated SIF at PS level is not possible to be directly validated for
ground or airborne measurements. APARchl or fAPARgreen were, there-
fore, used to indirectly evaluate the reliability of estimated SIFPS. But
the measurements or estimates of APARchl or fAPARgreen also contain
uncertainties. Moreover, the influence of SIF yield was neglected.
Therefore, the validation of our SIF downscaling must be elaborated in
future work.

5. Conclusions

Remote sensing based SIF measurements at canopy level are largely
affected by re-absorption and scattering within the leaves and canopies,
so the downscaling of SIF from canopy level to PS level is important to
better understand the link between SIF and GPP. A practicable solution
based on physical analysis and RF regression for the estimation of SIF
escape probability was proposed. The RF regression model was trained
using SCOPE simulations. The results were evaluated using SCOPE and
DART simulations, field experiments and HyPlant image. The results
indicate that, for the far-red band, the SIF escape probability is domi-
nated by the canopy scattering, while for the red band, the SIF escape
probability is related to both canopy scattering and reabsorption within
leaves. We conclude that accurate knowledge and correction of SIF
escape probability is essential to reduce associated large uncertainty in
the SIF-APAR relationship, and this is also expected to improve the SIF-
based GPP estimation. Our suggested approach is based on the spectral
invariant theory and relies on canopy directional reflectance at the red,
red-edge and far-red bands to downscale canopy SIF to leaf or photo-
system level. Although we could successfully demonstrate the reliability
of our approach, we identified strong sensitivity of our results to data
quality and assumptions in underlying models. We suggest advancing
reliability of reflectance data retrievals in requested wavelength ranges
and further assessing the impact of assumptions underlying our ana-
lysis.
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