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ABSTRACT: Advanced oxidation processes (AOPs) can degrade a wide range of trace
organic contaminants (TrOCs) to improve the quality of potable water or discharged
wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter
(DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can
scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward
contaminant transformation. The multiple ways in which different types or sources of DOM
can impact oxidative water purification processes are critically reviewed. DOM can inhibit the
degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals
for contaminants elimination and alter the transformation pathways of contaminants. An in-
depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs
based on DOM’s structure and optical properties and its reactivity toward oxidants as well as
the synergistic contribution of DOM to the transformation of TrOCs from the analysis of
DOM’s redox properties and DOM’s transient intermediates. AOPs can alter DOM structure
properties as well as and influence types, mechanisms, and extent of oxidation byproducts
formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative
water purification.
KEYWORDS: complex water matrices, radicals, trace organic contaminants, advanced oxidation, water and wastewater treatment

1. INTRODUCTION
Advanced oxidation processes (AOPs) include a range of
technologies applied in water and wastewater treatment to
degrade a wide range of trace organic contaminants (TrOCs),
including pharmaceuticals, personal care products, endocrine-
disrupting compounds, pesticides and algal toxins, and other
pathogens.1−9 AOPs produce radical species (RS) that react to
degrade TrOCs. AOPs that produce hydroxyl radicals (•OH)
or sulfate radicals (SO4

•−) are widely studied because of those
radicals’ high redox potentials (1.90−2.70 V and 2.60−3.10 V,
respectively).3,10−13 The superoxide ion (O2

•−) and singlet
oxygen (1O2) are also often involved but are not as frequently
studied.14−17 These reactive oxygen species are generated in
situ by activating precursors such as hydrogen peroxide
(H2O2), peroxymonosulfate (PMS) or peroxydisulfate (PDS)
with ultraviolet (UV) or solar light, ozone, metal ions, or
carbon- or metal-derived materials, perhaps in nanoscale
particles.1,3,18−26 Additionally, high-energy ionizing radiation
(HEIR) can be used, which uses γ-rays or electron beams to
simultaneously generate reactive H atoms, hydrated electrons,
and •OH.27 Other AOPs relying instead on reactive chlorine
atoms (Cl•, E0(•Cl/Cl−) = 2.55 V) have also received
attention in recent years.28−31 Specifically, chloramines used
to control membrane biofouling pass through the micro-
filtration and reverse osmosis membranes in wastewater reuse
treatment and carry over to the downstream AOP to form a

mixed UV/H2O2 and UV/chloramine AOP.8,19,32−36 The
collective universe of reactive species produced in different
AOPs is summarized in Table S1. Research indicates
synergistic benefits in TrOC degradation when combinations
of radical species are employed.37

Dissolved organic matter (DOM) and inorganic ions (e.g.,
chloride, bromide, and bicarbonate ions) present in all natural
water sources influence the type, formation rate, and reactivity
toward TrOCs by RS produced during AOPs, so the
composition of the feed water influences process effectiveness
in removing TrOCs. Secondary radicals, including carbonate
radicals (CO3

•−), chlorine radicals (Cl•/Cl2
•−), and bromine

radicals (Br•/Br2
•−), can be produced through reactions

between •OH or SO4
•− and dissolved salts. The secondary

radicals may themselves degrade some TrOCs, acting
synergistically with the process’s primary RS, or they can act
antagonistically by scavenging •OH or SO4

•− from the solution
before the primary RS reacts with TrOCs. The key to
understanding the relative significance of primary and
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secondary RS involves having quantitative information about
their aqueous concentrations and rate constants. These have
been the subject of research over several decades.38−41 TrOCs
bearing strong electron-donating substituents (e.g., −OH,
−NH2, and −OCH3) generally react rapidly with radical
oxidants, as do amines, organic sulfur, and olefinic functional
groups.12,13 However, compared to ample quantitative data on
the role of inorganic dissolved salts in AOPs, there is less of a
well-integrated and consistent framework for describing the
roles of DOM.

DOM is ubiquitous in surface or ground water at
concentrations of 1−10 mgC L−1, and in most treated
wastewater at 5−30 mgC L−1.42,43 DOM is a complicated
and heterogeneous mixture of macromolecules including
phenols, quinones, olefins, amines, sulfides, and heterocyclic
moieties (Figure 1). The structure of DOM is postulated to be
dominated by aggregates form via hydrogen and/or metal
interactions.44−48 The composition of DOM varies widely
depending on its origin and the biogeochemical processes it
has undergone.49−51 For example, waters dominated by
allochthonous DOM inputs are more hydrophobic, richer in
aromatic content, and have relatively high specific UV- and
visible-light absorption.44,52 Effluent organic matter (EfOM)
discharged from wastewater processing is dominated by more
hydrophilic bacterial DOM sources and enriched in organic
nitrogen.45,53−55 DOM with different hydrophilic or hydro-
phobic fractions can show different reactivities toward
oxidants.51,56

During ozonation, DOM can initiate or promote ozone
decomposition and form reactive byproducts that lead to high
•OH yields for a very short period.58,59 Because DOM also

scavenges •OH, the net effect is generally lower •OH exposure
(•OH concentration multiplied by the lifetime of the oxidant)
at higher ozone dosages.60−64 Waters where AOPs are applied
can have DOM concentrations orders of magnitude higher
than those of the TrOCs, so the DOM can outcompete the
TrOCs for •OH.11,29,65 Consequently, the presence of DOM is
generally viewed as decreasing the effectiveness of AOPs
toward TrOC degradation. For example, DOM can quench RS
(e.g., •OH and hydrated electrons) formed in the high-energy
ionizing radiation-based AOPs, thus inhibiting the removal
efficiency of contaminants.66

Treatment processes such as adsorption, membrane
separation, and pre-oxidation are often considered necessary
to remove DOM or decrease DOM reactivity prior to the
AOP. Less well acknowledged is how DOM can also promote
TrOC degradation through forming reactive intermediates
such as triplet excited states (3DOM*), 1O2, phenoxyl radicals,
and peroxyl radicals.67−73 The contribution of the transient
species within DOM, especially 3DOM*, to the degradation of
TrOCs, is most widely studied not in AOPs but in the context
of pollutant degradation in surface waters under solar
irradiation.74−76 However, the accurate prediction of TrOC
degradation in natural waters and in AOPs remains far from
satisfactory.11,65,77−79

Beyond affecting the degradation kinetics of TrOCs, radical
reactions involving DOM may form toxic byproducts (e.g.,
chlorinated byproducts with Cl•/Cl2

•−, dicarbonyls with •OH)
or change the extent or mechanisms of byproduct formation
(e.g., bromate and chlorate in UV/PDS AOPs).56,80−83 DOM
is a key precursor of disinfection byproducts when using
chlorine, chloramines or ozone as a disinfectant.1,84−86

Figure 1. Representative structure and active moieties of DOM involving various oxidative reactions in AOPs.57 The ovals represent key moieties:
red for carboxylic groups, blue for phenolic groups, green for nitrogen heterocycles. Reproduced with permission from ref 57. Copyright 1996
Elsevier.
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Likewise, oxygenated and halogenated byproducts from UV/
chlor(am)ine, UV/ozone and ozone/H2O2 AOPs are inevi-
table.19,33,62,87−90

This critical review aims at providing a comprehensive
understanding of the multiple roles of DOM in the application
of AOPs. We conducted in-depth analysis of the inhibitory
effect of DOM on the degradation efficiency of TrOCs based
on DOM’s structure and optical properties and its reactivity
toward oxidants (Section 2), followed by the synergistic
contribution of DOM on the transformation of TrOCs from
the analysis of DOM’s redox properties and DOM’s transient
intermediates (Section 3). Furthermore, DOM’s changes in
structure and property during various AOPs and related
oxidation byproducts formation are briefly discussed (Section
4). Finally, the challenges and opportunities for AOPs
treatment in real applications are defined (Section 5).

2. ANTAGONISTIC INFLUENCE OF DOM ON TROC
REMOVAL IN AOPS
2.1. DOM Inhibits the Generation of Reactive

Species. It is well-known that the presence of DOM can
reduce the steady-state concentration of reactive species
([RS]ss). It can inhibit their generation rates (rRS

f ) and increase
their consumption rates (kRS

d ) (eq 1 and Figure 2).

r
k S

RS
f

i i
SS

RS[ ] =
(1)

where rRS
f represents the generation rates of RS in a specific

AOP. ∑kiSi represents the sum of reactions between RS and
water matrix components (e.g., inorganic anions, DOM, and
the activating chemicals for RS generation).
2.1.1. DOM Absorbs UV/Solar Light. Chromophores in

DOM absorb light across the ultraviolet and visible spectra.
There is an exponential decrease in the molar absorbance
coefficient at longer wavelengths (Figure 3a).91−95 Decreased
transmittance of light limits direct photolysis of some TrOCs
and influences the activation of some AOP chemicals (e.g.,
H2O2, PMS, PDS). That reduces radicals’ generation and their
reactions with TrOCs.96,97 Consider low pressure UV-light-
driven AOPs as an example. The specific UV absorbance
(SUVA254) is calculated by dividing measured absorbance at
254 nm (UV254) by DOM concentrations (mgC L−1). SUVA254
serves as an indicator for aromaticity of DOM, and the
common values range from ∼1 to ∼7 L m−1 mgC

−1, from less

to more aromatic in nature.44,54,56 Besides DOM, inorganic
compounds in water also absorb light at 254 nm. For example,
the molar absorptivity value at 254 nm (ε254) for H2O2 is 18.6
M−1 cm−1, whereas those of HOCl and OCl− are 62 and 60
M−1 cm−1, respectively. The molar absorptivity at 254 nm for
NH2Cl is 371 M−1 cm−1, whereas for PMS and PDS the values
are 14 and 21.6 M−1 cm−1, respectively. O3 exhibits the highest
ε254 of 3000 M−1 cm−1 (Figure 3a).8,98−101 In environmentally
relevant conditions (e.g., pH 6−9), there is little variation in
the speciation and corresponding absorbance properties of
H2O2 (pKa = 11.8), PMS (pKa = 9.3), and PDS (pKa = −3.5).
Though HOCl has a pKa value of 7.5, the ε254 value of HOCl is
very close to that of OCl−, resulting in negligible absorbance
changes in aqueous chlorine species between pH 6 and 9. The
attenuation of light absorption by activating chemicals (AC)
because of DOM competition for photons (F) can be
calculated as

F(%)
SUVA DOM

SUVA DOM AC
100%254

254 254
=

× [ ]
× [ ] + [ ]

×
(2)

where the brackets indicate chemical concentrations.
Data for 26 source water samples from different regions

including the United States, Europe, Australia, and China has
been collected, and the results are summarized in Table S2,

Figure 2. Reaction types and pathways involved in DOM’s inhibition
of TrOC transformation in AOPs. Red area: DOM inhibits the
generation of reactive species via light attenuation (I), oxidant
consumption (II), and surface fouling (III). Blue area: DOM
quenches reactive species (IV). Green area: DOM interferes with
TrOCs degradation kinetics via complexation and binding with TrOC
(V) and reverse reactions in which antioxidants in DOM reduce the
intermediate radicals back to the parent compounds (VI).

Figure 3. (a) UV−vis absorbance spectra of the activating chemicals
and two DOM isolates with low pressure UV (LPUV), medium
pressure UV (MPUV), and sunlight (H2O2, PMS, and PDS at a
concentration of 1 mM, O3, HOCl, NH2Cl, and OCl− at 0.1 mM,
[SRNOM] and [SRFA] at 5 mgC L−1). (b) Screening fractions (F)
with different activating chemicals under LPUV irradiation (eq 2).
The SUVA and DOC concentrations are averaged from the data of 26
source water samples and 22 wastewater treatment plant effluents
(Table S2). IQR: interquartile range.
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which was used to make quantitative calculation of the impacts
of DOM on AOP effectiveness. The SUVA254 values varied
from 0.9 to 3.8 L m−1 mgC−1 with DOM concentrations
ranging from 0.9 to 10.7 mgC L−1. With a typical dose of
activating chemicals (e.g., 1 mM H2O2, PMS or PDS, 0.1 mM
HOCl, O3 or NH2Cl), DOM screening can be expected to
reduce the absorption between 3.2 and 98% (Figure 3b). In
comparison, the light screening fraction (F) by DOM in typical
wastewater effluents (SUVA254 = 1.6−5.5 L m−1 mgC−1 and
[DOC] = 3.8−10.6 mgC−1 based on data from 22 wastewater
treatment plants) ranged between 21 and 97% (Figure 3b). At
those doses, DOM attenuates HOCl’s absorption of 254 nm
UV light the most, followed by H2O2/PDS/PMS/NH2Cl and
then O3. Therefore, DOM generally inhibits UV-based AOPs.

Some AOPs use visible light (>400 nm) to minimize DOM’s
screening effects. At environmentally relevant DOM concen-
trations, less than 1% of the incident light at 400−470 nm is
screened out in chlorine-C3N4,20,102 MCNT-TiO2,103 or BiFe-
ZnO104 AOPs (Figure S1). Future research might usefully
emphasize artificial rather than solar light to decrease the size
requirements and diurnal variation limitations of natural
sunlight-driven AOPs.
2.1.2. DOM Consumes Activating Chemicals Used in

AOPs. H2O2, PMS, and PDS are rather stable in the presence
of typical DOM concentrations.105−109 However, DOM is
rapidly transformed in the presence of stronger oxidants such
as ozone, free chlorine, or chloramines.110,111 Ozone selectively
reacts with olefins, amines, and activated aromatic moieties
within DOM.63 When bromide is present, free bromine is
formed. Free chlorine and bromine are particularly reactive
toward phenolic groups, amines, and reduce sulfur moieties in
DOM,112,113 but free bromine reacts about ten times faster
with DOM than free chlorine.111 Monochoramine (NH2Cl)
and dichloramine (NHCl2) formed from the reaction of free
chlorine with ammonia have smaller reaction rate constants

with DOM.114,115 The decomposition of O3, free chlorine, and
free bromine in the presence of DOM follows a two-stage
kinetics with a rapid initial stage (lasting less than about 20 s)
and a slower consumption stage.64,111,116 Notably, relatively
high yields of •OH are formed in the rapid initial stage of
ozone reactions with DOM. That helps to reduce ozone-
resistant TrOCs.64,116 Depending on the types and concen-
trations of DOM, the decomposition rates of these chemical
oxidants vary and the generation of radicals is inhibited in the
presence of DOM, except in O3-based processes.
2.1.3. DOM Blocks the Active Sites of Solid-Phase

Catalysts. AOPs based on heterogenous catalysis generate
surface-bound or solution-released RS that degrade TrOCs. In
some cases the TrOCs are adsorbed on the catalyst’s surface
(Figure 2).22,117−121 DOM adsorbed on the catalyst’s surface
hinders performance to degrade TrOCs that occur at much
lower concentrations (from ng/L to μg/L) compared with
DOM concentrations (mg/L).122−126 Adsorbed DOM may
also block pores reducing the catalyst’s available intraparticle
surface area.103 This impairment has been demonstrated in
Fenton-like systems.124 DOM adsorption on catalyst surfaces
has been shown to reduce persulfate activation by the catalyst,
inhibiting the generation of reactive species.127−129 To our
knowledge there are no clear examples of DOM improving
TrOC removal in a heterogeneous catalysis-based AOP.
2.2. DOM Quenches Reactive Species. Reactions

between radicals and DOM commonly follow second-order
reaction kinetics with respect to both the concentrations of
radicals and DOM (eq 3), and are therefore similar to
bimolecular reactions between radicals and organic/inorganic
compounds:12,13

t
k

d RS
d

RS DOM
[ ] = [ ][ ]

(3)

Figure 4. (a) Second-order reaction rate constants of reactive species with DOM. (b) Correlation of the second-order reaction rate constants with
the DOM’s SUVA254. (c) Radical scavenging fraction by DOM in real waters. The data are the average of 20 surface water samples and 27
wastewater effluent samples. (d) Steady-state concentrations of •OH, CO3

•−, Cl•, Cl2
•−, Br•, Br2

•−, and SO4
•− in typical AOPs.8,11,41,65,133,137,138
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The second-order rate constants for the reactions of reactive
species with DOM were collected from literature, and the
results are represented several ways within Figure 4. Figure 4a
summarizes rate constant ranges between DOM and common
RS. As the figure shows, k•OH,DOM ≈ kCl•,DOM (108−109 MC

−1

s−1) > kBr•,DOM (107−108 MC
−1 s−1) > kSOd4•−,DOM (107−108

MC
−1 s−1) > kCld2•−,DOM (106−107 MC

−1 s−1) > kBrd2•−,DOM (105−
1 0 6 M C

− 1 s − 1 ) ≈ kC O d 3 • − , D O M ( 1 0 5 − 1 0 6 M C
− 1

s−1).44,51,55,56,130−135 For example, the second-order reaction
rate constant for Suwannee River fulvic acid (SRFA) reacting
with •OH is (1.86 ± 0.25) × 108 MC

−1 s−1.136 With Cl• it is
(4.12 ± 0.32) × 108 MC

−1 s−1,56 with Br• (3.0 ± 0.3) × 108,135

with SO4
•− (2.28 ± 0.07) × 107,132 with Cl2

•− (1.64 ± 0.35) ×
107,56 with CO3

•− (1.74 ± 0.06) × 106,131 and with Br2
•− (9.4

± 1.3) × 105 MC
−1 s−1.135 The reaction kinetics between DOM

and •OH have been the most extensively studied, with far
fewer studies reporting reaction rate constants of DOM with
Cl•, Cl2

•−, Br•, Br2
•−, SO4

•−, or CO3
•−. Tables S3 and S4

summarize what is known about the second-order rate
constants of reactions between DOM and oxidants used in
AOPs.

Noteworthy in Table S3 is that only two rate constant values
are reported for DOM’s reactions with 1O2 or O2

•−. DOM
reportedly quenches 1O2 with an overall reaction rate constant
of (0.41−1.6) × 106 MC

−1 s−1. Phenols and aromatic amines
are the dominant DOM constituents involved.139,140 A recent
study using a flow injection analysis system determined an
apparent rate constant for SRFA with O2

•− of approximately
(1.8−2.2) × 103 MC

−1 s−1.141 O2
•− is a weak oxidant that can

be reduced to H2O2 (E0(O2
•−/H2O2) = 0.91 V vs. the normal

hydrogen electrode (NHE)) or itself serve as a moderately
strong reducing agent (E0(O2

•−/O2) = −0.33 V vs. NHE).142

O2
•− has relatively high reaction rate constants with cations

and quinones,143 but such compounds may mainly play a
catalytic role during the formation of H2O2 from O2

•−.144

Overall, more studies focusing on the kinetics of the reactive
species’ reactions with DOM are needed to understand the
sensitivity of different structures and the influence of the
DOM’s composition.

DOM from different sources shows distinct reactivity
patterns. For example, the k•OH,DOM and kCl•,DOM values for
EfOM isolates are higher than those of natural organic matter
(NOM) isolates; however, kCOd3•−,DOM values are lower for
EfOM isolates.131 Humic acids (HAs) have higher kCl•,DOM
values than more hydrophilic and less aromatic fulvic acids
(FAs), but no significant difference in kCld2•−,DOM is observed
between HA and FA.56 kSOd4•−,DOM, kCld2•−,DOM, and kCOd3•−,DOM

all correlate negatively with E2/E3 (the absorbance at 254 nm
divided by the absorbance at 365 nm) (Figure S2). However,
they and kBr•,DOM and kBrd2•−,DOM have a positive correlation
with the DOM’s phenolic content and aromaticity as expressed
by its SUVA254 (Figure 4b).56,131 kCl•,DOM and k•OH,DOM,
however, are not similarly correlated. kCl•,DOM correlates
negatively with the DOM’s average molecular weight because
of diffusion controlled reactions.56 Different studies have
reported contradictory trends with molecular weight.44,52,56

Both •OH and Cl• are highly reactive toward organics with
rate constants (e.g., k•OH,phenol = 0.7∼1.5 × 1010 M−1 s−1,
kCl•,phenol = 1.1 × 1010 M−1 s−1) often approaching the
diffusion-controlled limits (∼1010 M−1 s−1, i.e., ∼109 MC

−1 s−1

based on the Smoluchowski equation).41,145 The kCl•,DOM and
k•OH,DOM values often reach the diffusion-controlled limits
(∼109 MC

−1 s−1) as shown in Figure 4a, suggesting the
reactions are more diffusion-controlled rather than activation-
controlled, thus the rates were more affected by the molecular
size.51,56,146 Whereas SO4

•−, Cl2
•−, Br•, Br2

•−, and CO3
•− are

more selective and reactive with the electron-donating groups
in DOM.

As has been mentioned, inorganic ions such as HCO3
−,

CO3
2−, Cl−, Br−, etc. in the water matrix also scavenge

radicals.147 The second-order rate constants of those reactions
are also summarized in Table S4. Analysis of the competitive
kinetics can give some quantitative understanding of the
relative importance of radical scavenging by inorganic ions
versus scavenging by DOM. DOM’s relative contribution to
radical scavenging ( f DOM) can be estimated using eq 4.

f
k

k k k k k
(%)

DOM
DOM HCO NO Cl

100%DOM
DOM

DOM HCO 3 NO 2 Cl d3 2

=
× [ ]

× [ ] + × [ ] + × [ ] + × [ ] +
×

(4)

The term kd is the first-order natural decay rate constants for
these transients (e.g., 1O2 is quickly relaxed to ground state
triplet oxygen in water). The kd values are 2.4 × 105 s−1 for
1O2, 2.5 × 105 s−1 for Cl•, 1300 s−1 for Cl2

•−, 1.4 s−1 for Br•,
and 660 s−1 for SO4

•−; they are not available for others.148,149

It should also be noted that the reactions of Cl− with •OH
generate ClOH•− as the intermediate (4.3 × 109 M−1 s−1),
which quickly reverses back to regenerate •OH (6.0 × 109 s−1).
Thus, Cl− does not significantly impact the •OH concen-
trations at the typical concentrations in water and some
wastewater and is thus not included in calculating the f DOM for
•OH.

To illustrate the importance of commonly occurring
compounds in water, 20 surface waters and 27 wastewater
treatment effluents reported in the literature (Table S5) were
evaluated, which have DOM concentrations ranging from 6.1
to 8.2 mgC/L. These waters had concentrations of HCO3

−

from 2.23 to 2.74 mM, 1.96 to 6.31 μM for nitrate, and 0.27 to
2.08 mM for Cl−. At the typical pH range of 6.5∼8 in surface
water and wastewater effluents, bicarbonate is the dominant
species (i.e., H2CO3 and CO3

2− are not considered as
significant). Equation 4 was used to calculate the f DOM values
for different RS. As Figure 4c shows, DOM acts as the major
sink for CO3

•− ( f DOM ∼100%) and •OH ( f DOM values range
from 37 to 96% depending on the source and composition of
the DOM). In contrast, f DOM values decrease to 0.4−20% for
SO4

•−, to 0.14−6% for Cl•, to 5−68% for Br•, to 0.2−12% for
Br2

•−, and to 0.9−20% for Cl2
•− because of the significant

competition from HCO3
− and Cl− in real waters. 1O2 exhibits

little DOM scavenging ( f DOM < 0.5%) because most of it could
naturally relax to the ground state triplet oxygen in water.150

Although Cl2
•− and CO3

•− are less reactive with DOM than
•OH and SO4

•− (Figure 4a), their aqueous concentrations
could be up to 4 orders of magnitude higher in some AOPs

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.2c01017
Environ. Sci. Technol. 2022, 56, 11111−11131

11115

https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01017/suppl_file/es2c01017_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01017/suppl_file/es2c01017_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01017/suppl_file/es2c01017_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01017/suppl_file/es2c01017_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01017/suppl_file/es2c01017_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c01017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Figure 4d), resulting in comparable overall radical species
exposures (∫ [RS]SSdt).11,151

2.3. DOM Interferes with TrOC Degradation. In
addition to affecting the formation and consumption of
reactive species, DOM associates with TrOCs and/or alters
the transformation pathways of TrOCs, thus inhibiting overall
degradation.
2.3.1. DOM Associates with TrOCs. A few studies have

found that DOM can enmesh TrOCs within its macro-
molecular structure in ways that reduce TrOCs’ susceptibility
to reactive species in solution. The current view is that DOM
can be represented as a supra-molecular assembly held
together by van der Waals interactions, and that TrOCs can
interact with that structure via electrostatic interaction,152,153

hydrogen bonding,11,154 or hydrophobic interaction.155,156

DOM components are amphiphilic, containing both non-
polar domains (e.g., aliphatic and aromatic hydrocarbons) and
polar domains (e.g., oxygen-, nitrogen-, and sulfur-bearing
moieties). That results in its three-dimensional structure and
charge density depending on the solution’s pH and ionic
strength.156,157 At a circumneutral pH, DOM is negatively
charged because of deprotonation of its carboxylic and
phenolic moieties.153 Positive-charged TrOCs such as amino-
glycoside antibiotics can therefore absorb into DOM via
electrostatic interaction.146 Phototransformation of amino-
glycosides and histidine is reportedly enhanced through such
absorption because of the much higher concentrations of RS
(e.g., 1O2 and •OH) in the DOM’s microenvironment than in
the bulk water.152,153 However, this has not been well
documented in an AOP. The hydrophobic interaction between
DOM and hydrophobic organic compounds (e.g., PAHs and
polychlorinated biphenyl) is related to their hydrophobic-
ity.158,159 Hydrogen bonds were reported to form between
DOM and TrOCs.11 For instance, the imidazole ring of
nitroimidazole antibiotics forms hydrogen bonds with
phenolics and quinones in DOM.160,161 That facilitates
hydrogen-atom transfer in RS generation.162

Enhanced degradation of pollutants in the presence of DOM
has also been reported. For instance, DOM is reported to
enhance the degradation of perfluoro-octanesulfonate (PFAS)
in UV/iodide treatment. One reason is because confinement
by an iodide-DOM-PFAS adduct constrains the generation of
eaq

− and the local decomposition of PFAS.163,164 Because of
the complicated interactions among pollutant, DOM, and RS,
the reaction kinetics and mechanisms in such confined volume
reactions are not yet well understood, nor is the fate of TrOCs
absorbed into DOM.
2.3.2. DOM Reduces Organic Radical Intermediates.

Various functional groups in DOM can interfere with TrOC
degradation in different ways. For example, antioxidant groups
found in DOM, such as phenols, can interfere in the redox
reactions of TrOCs in AOPs.110,165−168 Single electron
transfer, H-abstraction, and radical addition are three well-
known pathways for reactions involving radicals.3,12,13,41

During radicals’ reactions with a TrOC (e.g., P), single
electron transfer generates a radical cation (P•+) and H-
abstraction generates a neutral radical (P(−H)

•) (eq 5). P•+ can
also deprotonate to P(−H)

• depending on the pH (eq 6).169,170

In the absence of DOM, P•+ and P(−H)
• will decompose to

generate oxidized Pox (eq 7). In the presence of DOM,
however, P•+ and P(−H)

• may be quenched by antioxidants in
the DOM (DOMao) and revert back to the parent compound
(eq 8). This is thought to explain DOM’s inhibition of the

photosensitized transformation of certain TrOCs under solar
irradiation.165,171,172 Recently, the inhibitory effect of DOM on
anilines and sulfonamide antibiotics in a SO4

•−-based AOP has
been reported. It is thought to be mainly caused by reduction
of intermediate radicals by phenolic groups in the DOM.166

However, the antioxidant capacity of DOM does not follow the
same pattern as its inhibitory effects. That is, the DOM with
the greatest antioxidant capacity does not deliver the strongest
inhibition. The reason remains unknown.

SO P SO P4 4
2+ +• •+

(5)

P P H( H) +•+ • +
(6)

P (or P ) P( H) ox
•+ •

(7)

DOM P (or P ) P DOMao ( H) ox+ +•+ •
(8)

Quantitative examination of the quenching of P•+/P(−H)
• by

antioxidants in DOM has so far been quite limited. Three
recent studies tracked the transient spectra of the intermediate
radicals and obtained the quenching kinetics for tryptophan
radical cation (Trp•+), 4-(dimethylamino) benzonitrile radical
cation (DMABN•+), and neutral adenine radical (ADN(−H)

•).
The rate constants for their quenching reactions varied from
107 to 109 M−1 s−1 with the phenolic model compounds
studied and from 107 to 108 MC

−1s−1 with Suwannee River
DOM isolates.167−169 Only 37% of the SO4

•− was quenched in
the presence of 1 mgC L−1 of Suwannee River NOM
(SRNOM), but the first-order degradation rate constant of
ADN decreased by 88% compared with that in the absence of
SRNOM. That has been attributed to the reversing of
ADN(−H)

•’s reactions by the phenolic moieties within
DOM.173 In consideration of the higher concentrations of
DOM (mgC L−1) found in natural waters, the reverse reactions
may significantly affect the degradation of TrOCs in AOPs,
especially those with high reaction rate constants (eq 8).174

Not all contaminant radicals can be quenched by the
antioxidants in DOM. The three intermediate radicals
discussed above all have relatively high reduction potentials.
For Trp•+ it is 1.0 V vs. standard hydrogen electrode (SHE)
(at pH 7.0). For DMABN•+ it is 1.3 V and for ADN(−H)

• it is
1.32 V vs. SHE.167−169 The reduction potential for aniline
radical cations is also high at about 1.0 V vs. SHE.175

Regarding the antioxidants in DOM, taking the phenolic
compounds as examples, their oxidation potentials are in the
range from −0.79 to −0.4 V for their deprotonated forms.176

As such, most phenols are susceptible to oxidation by these P•+

or P(−H)
• via single electron transfer. However, the reduction

potential difference is not the only factor controlling the
reaction between P•+ or P(‑H)

• and antioxidants. Some
phenolic and thiol-containing compounds can undergo
proton-coupled electron transfer with P•+ or P(−H)

•.177,178

Previous studies also indicate that the reaction rate constants
between P•+ or P(−H)

• and antioxidants are not exactly in line
with the reduction potentials. That suggests that both proton-
coupled electron transfer and single electron transfer might be
involved in the reactions.167

3. SYNERGISTIC CONTRIBUTION OF DOM TOWARD
TROC TRANSFORMATION

Often overlooked and rarely intentionally integrated into AOP
design or operation is the potential for DOM to synergistically
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enhance TrOC removal. Figure 5 illustrates some synergistic
mechanisms and their potential relevance.

3.1. Formation and Reactivity of Transient Species
within DOM. The reactions of inorganic radicals with DOM
can generate DOM radicals (DOM•), which may also
contribute to the degradation of TrOCs in an AOP (eqs 9
and 10) (Table S6).

OH/SO /CO DOM DOM4 3 +• • • •
(9)

DOM P Pox+• (10)

The absorption spectra of DOM• appear during •OH
reactions with DOM isolates. The peak absorbance is at 325−
400 nm.51 DOM•’s absorbance at 400 nm because of •OH
oxidation of SRFA decays exponentially within milliseconds. In
SO4

•− oxidation of DOM the transient absorbance at 450 nm
may be attributed to phenoxyl radicals resulting from one-
electron oxidation of phenolic moieties in the DOM.132 The
current understanding of transient species within DOM is still
quite limited, but it seems to be present as longer and shorter
lived species that can also be important in engineered AOP
systems. The millisecond time scale of DOM•’s existence is
sufficient for it to be involved in reactions with other radicals.

DOM• species including phenoxyl (PhO•), alkoxyl (RO•),
peroxyl (ROO•), and percarboxyl radicals (RC(O)OO•) have
half-lives ranging from microseconds or milliseconds for PhO•

and RO• to a few seconds for ROO•.179,180 The reduction
potential for the unsubstituted phenoxyl radical (PhO•) is 0.79
V (vs. NHE).176 Those of substituted phenoxyl radicals vary
from near zero for electron-rich substituents (e.g., 4-O−-PhO•)
to 1.22 V (vs. NHE) for electron-poor substituents (e.g., 4-
NO2-PhO•).176 The reduction potentials are 1.23−1.47 V (vs.
NHE) for RO•, 1.05−1.19 V (vs. NHE) for ROO•, and 0.71−
0.83 V (vs. NHE) for RC(O)OO•.181,182 Consequently,
organic radicals are potentially as capable as inorganic radicals
of transforming TrOCs. The oxidation potential of TrOCs can

vary widely, for example from −1.22 to −0.54 V for phenols or
−1.32 to −0.59 V for anilines.10,67,73 Thus, their oxidation by
transient species within DOM is thermodynamically feasible.
Note that other transient species formed from amino acids
present in DOM (amine radical cations for example) may be
reactive because of their relatively high reduction potential
(∼1.0 V vs. SHE),175,176 but their impact is minor because of
their much lower concentrations relative to phenolic moieties
within DOM.183

Second-order reaction rate constants between organic
radicals (e.g., RO• and ROO•) and common moieties and
classes of pollutant (e.g., phenols, aromatic amines, and
hydrocarbons) are listed in Table S7. Among the long-lived
transient species within DOM, phenoxyl radicals may be the
most important because of the prevalence of phenolics in
DOM (at mM gC−1 levels).183,184 Phenoxyl radicals are very
selective and reactive toward electron-rich organic compounds
such as phenolates and amines via single electron transfer
reactions.185 For example, the second-order rate constants for
reactions between phenoxyl radicals and dissociated catechol,
hydroquinone, and thiols approach diffusion-controlled rate
limits (∼109 M−1 s−1).185 However, the rate constants for
reactions with electron-poor moieties (e.g., olefins and fatty
acid esters) are very low (from ∼10−5 to 10 M−1 s−1).185 The
oxidation of some TrOCs such as anilines and sulfonamide
antibiotics in SO4

•−-based AOPs has been attributed to
phenoxyl radicals generated from electron-poor moieties
within DOM (roughly 1.0 to 1.3 V vs. NHE).166 Despite the
evidence of a role for phenoxyl radicals, little is known about
their structures, levels, and distribution within the DOM
ensemble. Additionally, tert-butoxyl radicals are also reactive
toward electron-rich moieties, such as the unsaturated fatty
acids and some nucleosides and their reaction rate constants
reach ∼108 M−1 s−1.186 Phenylperoxyl radicals can react with 4-
methoxylphenolate and chlorpromazine at ∼108 M−1 s−1 via
the electron-transfer reaction pathway.187 The transient species
within DOM can be versatile because of the diverse function
groups of DOM. Many factors, including self-reactions or steric
hindrance, can affect their reactivity. Though the reaction rate
constants of DOM• with TrOCs have not been well studied so
far, related literature results imply that they may play important
roles in degrading some TrOCs, especially those with electron-
rich moieties.

Besides redox reactions, nucleophilic addition reactions to
quinones or semiquinone radicals have also been reported. The
aniline nitrogen in sulfonamide antibiotics and the thiol-sulfur
in captopril undergo addition reactions at the DOM’s electron-
poor sites.70−72 Besides the 1,2-nucleophilic and 1,4-
nucleophilic addition reactions of aniline with quinones in
DOM, radical reactions involving anilino and semiquinone
radicals are also possible.70−72 This could constitute an
additional TrOC degradation pathway in the presence of
DOM.

In addition to the long-lived DOM•, DOM also produces
other short-lived reactive species such as O2

•− and •OH.
Previous studies have indicated that redox-active moieties such
as phenolic and quinone-like groups present in DOM may be
responsible for the formation of O2

•− in AOPs.144,188−190

Upon photoexcitation and/or oxidation by SO4
•−, electron-

donating phenolic groups in DOM may transfer electrons to
quinone-like groups with electron-accepting capacity yielding
one-electron reducing intermediates (DOM•−) (eqs 11 and
12). The DOM•− can be further oxidized by oxygen to

Figure 5. Synergistic mechanisms involving generation of reactive
species from DOM that potentially accelerate the transformation of
TrOCs in an AOP. PS means inclusion both of PDS and PMS.
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generate O2
•− (eq 13). Furthermore, the formation of H2O2 is

dominated by catalyzed and uncatalyzed O2
•− dismutation

processes (eq 14).191 H2O2 can also produce •OH via further
photolysis or through the Fenton-type reactions (eq
15).192−194 •OH can also be formed from O3 oxidation of
DOM (eq 16). DOM moieties such as phenols, amines, and
amino acids generate •OH upon O3 oxidation.64,116 Electron-
rich moieties in DOM, such as phenols, anilines, olefins can act
as radical initiator and initiate the transformation of O3 to
•OH.64 Carboxylic acid, hydroxyl, and aryl groups in DOM
react with •OH and can act as radical promotors, through
which organic radicals can form and then propagate the radical
chain reactions to eventually produce another •OH.44,54,63,195

Alkyl groups in DOM act as inhibitors to interrupt radial chain
reactions by rapidly scavenging •OH. Depending on DOM
properties, both inhibitory and promoting effects on pollutants
removal have been observed in ozonation and ozone-based
AOPs.196,197

hvDOM DOM3+ * (11)

DOM PhOH DOM PhO H3 * + + +• • + (12)

DOM O DOM O2 2+ +• • (13)

2O 2H H O O2 2 2 2+ +• + (14)

H O HO2 2
• (15)

DOM O HO3+ •
(16)

The synergistic impact of transient species within DOM on
TrOC degradation should be considered relative to its impact
on the inorganic reactive species for which most AOPs are
designed. Long-lived DOM• forms because it has relatively low
reactivity with other compounds in the water compared to
other radical species. That may leave higher DOM•

concentrations in the water to react with TrOCs in
competition with inorganic radicals. There are, however, few
reports of DOM•’s concentrations measured during AOPs.
That is an area where future research is likely to be fruitful.

Consider the potential importance of transient species
within DOM. For TrOCs having relatively high reaction rate
constants with DOM• (say, 106−109 M−1 s−1), the
contribution of transient species within DOM to their
degradation may not be negligible. A recent study has
demonstrated that semiquinone radicals (SQ•−) can make a
significant contribution to the degradation of nitroimidazoles
in SO4

•−-based oxidation process with DOM present.73 The
SQ•− is formed via the SO4

•−-induced oxidation of the DOM’s
quinone- and hydroquinone-like moieties. The second-order
rate constant for tinidazole’s reaction with SQ•− has been
determined to be (5.69 ± 0.59) × 106 M−1 s−1.73 Although
SQ•− reacts with tinidazole with a much lower rate constant
than that of SO4

•− ((2.70 ± 0.06) × 109 M−1 s−1), the
concentration of SQ•− is typically about 3 orders of magnitude
higher than that of SO4

•−, resulting in SQ•− making a
comparable contribution to tinidazole elimination.73 Deproto-
nated phenolic and thio-containing TrOCs may be affected by
the generation of transient species within DOM in AOPs
because of their high reactivity with DOM•.185

The importance of reactive species from DOM is dependent
on their concentrations and reaction rate constants. Production
of 3DOM*, 1O2, and H2O2 that occurs during UV irradiation
treatment of water containing DOM and 3DOM* was

concluded to impact TrOCs’ removal only at very high UV
doses (e.g., 2000 mJ/cm2).95 In •OH-based AOPs for surface
water and wastewater treatment, such as O3/H2O2 and UV/
H2O2 AOPs, models to predict TrOCs’ degradation currently
not only account for the scavenging impacts of DOM but also
show acceptable predictive performance.79,198,199 These
findings suggest the minimal impacts of transient species
within DOM in •OH-based AOPs, whereas such DOM
impacts may be more significant in SO4

•−-based AOPs. The
difference between •OH- and SO4

•−-based AOPs relates to the
reaction mechanisms of •OH and SO4

•− radicals with DOM
and the different types of transient DOM species produced.
For example, •OH is prone to react with DOM via unsaturated
bond addition to produce •OH-adducts, which react rapidly
with oxygen (108−109 M−1 s−1).200 In contrast, SO4

•− serves as
a one-electron oxidant, and produced DOM•+ or DOM(−H)

•

may participate in the redox reactions of TrOCs. Additionally,
the concentrations of DOM• generated in •OH- and SO4

•−-
based AOPs may also be quite different and exert different
impacts in TrOC transformation (Figure 4). The information
on DOM• in different AOPs needs more exploration.

Transient DOM species’ influence on TrOC degradation
may be advanced by improved quantitative detection and
tracking their concentrations. Application of time-resolved
spectroscopy, electron paramagnetic resonance spectroscopy,
and electrochemical analysis can provide some information
about the optical and redox properties of DOM•. The
reactivity of a specific radical can be explored by using laser
flash photolysis or pulse radiolysis techniques. We postulate
the difficulty lies in the quantification of [DOM•]ss because of
the heterogeneous structures that comprise DOM, the
coexistence of multiple organic radicals, and the lack of
specific probe for the organic radicals. Novel chemical probes
that detect these intermediates would be highly beneficial and
are urgently needed. In consideration of the large quantity of
phenolic and quinoid moieties in DOM (μM/mgC),73,183,184

research on phenoxyl radicals and semiquinone radicals may be
a good starting place for future research.
3.2. DOM Involved Pathways to Generate Reactive

Species. Phenolic and quinone moieties seem to play the
most important roles in the radical formation in AOPs (Figure
5). Quinones can activate PDS or PMS to generate reactive
species.201−204 For example, 1,4-benzoquinone (BQ) can
activate PDS to generate SO4

•− through forming a semi-
quinone radical,201 or it can react with PMS to form a
dioxirane intermediate, which subsequently decomposes to
produce singlet oxygen (1O2).202 However, in studies of the
activation of PMS or PDS the relative importance of DOM has
not been significant. This is probably because of the low
concentrations of quinone compounds in natural waters and
wastewater.109

Phenolic and quinone moieties are involved in the redox
transformation of Fe(III) to Fe(II) (E0 = 0.77 V vs. NHE).205

Fe(II) can activate H2O2, PMS, or PDS to generate •OH or
SO4

•−. The slow transformation from Fe(III) back to Fe(II) is
known to be the rate-limiting step in Fe(II)-mediated AOPs,
so the presence of DOM can enhance the working of Fenton
and Fenton-like processes because hydroquinone- and/or
semiquinone-type species in DOM can promote Fe(III)/
Fe(II) redox cycling.188,206 The enhancement of course
depends on the types and concentrations of the reducing
moieties, as DOM also consumes radicals. Additionally, DOM
complexes with iron species. The complexation changes the
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reduction potential of iron and can accelerate the rate of
Fe(II)’s oxidation by the oxidants such as H2O2, PMS, or PDS.
That would enhance radical formation.207,208 That is why the
presence of DOM has been found to enhance the degradation
rates of certain TrOCs in the Fe(II)/H2O2, Fe(III)/H2O2,
Fe(II)/PDS, and PMS-amended iron coagulation processes
using ferric salts.109,208−211 Similarly, the redox-active moieties
in DOM can also mediate the redox cycling of Cu(II)/Cu(I)
and vanadium(V)/vanadium(IV), and that can also enhance
the activation of PDS or PMS.212,213 Moreover, in a PMS
system activated by visible-light-excited humic acid, quinone
moieties are photo-induced and act as electron shuttles to
accelerate electron transfer between the humic acid and the
PMS. That can activate PMS to form reactive species for the
degradation of bisphenol-A.214 Future experiments may better
elucidate the role of DOM by examining the net effects of
bisphenol-A degradation by light-activated PMS across a range
of concentrations of DOM from different sources.
3.3. Engineering Systems Containing DOM to

Generate More Reactive Species. Phenolic, quinone, and
quinone-like moieties in DOM are the redox-active moieties,
and they can complex with metals, induce and mediate
electron transfer with transition metals, and activate oxidants
to generate reactive species.201,205,215−217 Tailoring technolo-
gies to utilize DOM in water to enhance the generation of
reactive species for the degradation of TrOCs is an emerging
opportunity. It may constitute an attractive alternative to
removing DOM prior to advanced oxidation treatment. For
example, an organic Fenton-like catalyst was developed
recently by exploiting quinone-like compounds as H2O2
activators to generate reactive •OH and 1O2. This results in
improving pollutant reduction while refreshing electrochemi-
cally the working electrodes.194 Another example is a PMS-
amended iron coagulation process that achieves both
coagulation and advanced oxidation mainly by relying on
DOM’s ability to complex with Fe and promoting its redox
cycling. The result is enhanced generation of •OH and
SO4

•−.109,213 The degradation of bisphenol-A has been shown
to be enhanced in a process in which PMS is activated by an
FeAl layered double hydroxide compounded with DOM.218

To improve our fundamental understanding of these
systems, we must improve the quantitative characterization
of specific functional groups present in DOM that are involved
in the pathways to generate reactive species (e.g., electron
shuttles and/or direct electron transfer). Specifically, quanti-
fication of reactive species formation efficiency based on the
number of electrons transfer between DOM and activating
chemical/materials are required. These insights will then allow
new and novel engineered designs that enhance electron
transfer efficiency to improve the positive effect of DOM.

4. DOM TRANSFORMATION AND BYPRODUCT
FORMATION

Reactions with radical oxidants and activating agents (e.g., UV
light) inevitably alter DOM’s composition and may result in
byproducts formation. Figure 6 illustrates representative
transformations in DOM structure and byproduct formation
during AOP treatment.
4.1. Alteration of DOM Compositions. Quantifying the

alterations of DOM in AOPs has involved techniques such as
monitoring changes in optical properties using UV−vis
absorption and fluorescence spectroscopy.44,52,219 Changes in
redox properties can be monitored using electrochemical

detection and titration methods,110,183,220−222 and changes in
chemical composition are apparent through size exclusion
chromatography, nuclear magnetic resonance (NMR) spec-
troscopy, and mass spectrometry.44,45,52,80,111,146,223−225

DOM’s aromatic content commonly decreases during an
AOP and is reflected in a reduction in its SUVA.89,92,105,219−222

DOM’s aromatics are responsible for UV absorbance around
254 nm, and their selective attack during AOP treatment is
logical given the positive relationship between radical reactivity
and DOM’s SUVA (Figure 4b). The transformation of high
molecular weight DOM fractions into lower molecular weight
ones is observed both in •OH-based AOPs and in UV/chlorine
treatment.226,227 In SO4

•−-based oxidation, there is often
simultaneous removal of higher molecular weight chromo-
phores and mineralization.223 The incorporation of nitrite-
sourced nitrogen into DOM molecules has been confirmed by
15N NMR analysis in a heat/PDS system.228

DOM transformation at the molecular level has been
increasingly investigated by using high-resolution mass
spectrometry methods, such as Fourier transform ion cyclotron
resonance (FT-ICR) and Orbitrap mass spectrometry
(MS).80,224,229,230 A reduction in aromaticity and in double-
bond equivalence, co-occurring with an increase in the degree
of oxidation and in aliphatic content (0.5 < O/C < 2 and 1 <
H/C < 3), are often observed in various AOPs.139,225,231−233

DOM with a lower H/C ratio and greater aromaticity is more
readily degraded in the UV/chlorine process rather than UV/
H2O2 or UV/PS processes.232 A recent study indicates that
DOM moieties with lower H/C ratios (i.e., more aromatic) are
favorable for ozone reactions, while those with high H/C ratios
(i.e., more aliphatic) are favorable for •OH reactions.224

Additionally, diverse transformation products have been
observed after AOP treatment. •OH often reacts via radical
addition and produces numerous hydroxylated, oxygenated,
and ring-cleavage products after reacting with DOM.224,234

SO4
•− preferentially attacks the carboxyl-rich molecules in

DOM via single electron transfer pathways and the
stabilization of intermediate cationic radicals is often associated
with decarboxylation reactions.223,234 Chlorine photolysis
transforms DOM via multiple pathways and produces more
aliphatic organics and it is difficult to characterize high
molecular weight chlorine-containing products.80

The composition of oxidized DOM can affect the
subsequent water treatment processes and water qualities
receiving the effluent. The polar and lower molecular weight
organic byproducts (e.g., aldehydes, ketones, and carboxylic
acids) are often biodegradable. Assimilable organic carbon
(AOC), a measure of the labile fraction of DOC, is frequently
observed to increase after UV/H2O2, UV photocatalysis, and

Figure 6. Formation of byproducts from DOM transformation in an
AOP.
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O3/H2O2 treatment, though discrepancy exists.235−237 AOC is
a critical parameter for controlling bacterial regrowth potential
in water distribution systems, and the increases in AOC values
suggest the reduction of water biostability after AOPs
treatment. •OH-induced decarboxylation and deamination
seem to reduce and enhance the assimilability, respectively,
whereas both increases and decreases in assimilability are
observed for hydroxylation and dealkylation reactions.235

There is some consensus about the order of magnitude of
AOC concentrations that constitute biostable water. AOC
levels from below 10 to 100 μg/L are often considered to
support only low levels bacterial growth in drinking water.238

Biological activated carbon or biological filters after AOPs can
be helpful to reduce AOC levels.239 Further studies are
suggested to evaluate the assimilability of AOP treated water
and the dependence on water quality and radical exposure.

Additionally, low molecular weight carbonyls (LMWCs),
such as α,β-unsaturated enedials and oxoenals, can form from
DOM’s phenolics during UV/H2O2 treatment.81,223 The
unsaturated carbonyl compounds, in particular α,β-unsaturated
aldehydes, may pose potential health risks because of their high
reactivity via nucleophilic addition to biomolecules.

The understanding of the DOM transformation is essential
as it affects not only the elimination efficiency of TrOCs but
also the environmental risks in receiving waters. The
combination of bulk analytical methods, augmented with
high-resolution MS, is needed to gain further unknown DOM
transformation byproducts. Building upon prior work, there is
evidence that improved molecular identification can be
improved by applying hydrophilic interaction chromatography
and high-performance size exclusion chromatography to
separate DOM into fractions before analysis.240,241 The
combination of chromatograph separation, multidimensional
NMR, and FT-ICR MS can be helpful to improve the
understanding of the transformation of DOM at molecular
levels in the AOPs.
4.2. The Formation of Toxic Halogen Containing

Byproducts. Halogenated organic byproducts (X-OBPs) can
form as DOM transforms during AOPs, and X-OBPs are of
high concern because of their potential human health
risks.242−244 X-OBPs can form through multiple pathways in
AOPs, including reactions of DOM with halogen radicals and/
or hypohalous acid/hypohalite (HOX/OX−). Halides in the
water can be oxidized by primary radicals (•OH, SO4

•−, etc.)
to form halogen radicals. Chain reactions among halogen
radicals and the oxidation of halides by common oxidants (e.g.,
ozone, PMS), reaction intermediates (e.g., Co3+), and
activation reagents (e.g., CuFeO2) all produce HOX and/or
OX−.245−248 The generation of X-OBPs from HOX/OX− is
well-known, but debates continue regarding whether halogen
radicals can react with DOM to form X-DBPs.87,249−251 Recent
work in our group provides direct evidence of the difference of
chlorine and bromine radicals in forming X-OBPs.56,135

Chlorine radicals (Cl• and Cl2
•−) react with DOM to form

Cl-OBPs. The maximum total organic chlorine (TOCl) was
around 1 μM and ∼3−7 μM at an oxidant exposure (CT
value) of 4−8 × 10−12 M s−1 for Cl• and 1.1−2.2 × 10−10 M
s−1 for Cl2

•−, respectively. In contrast, bromine radicals (Br•

and Br2
•−) barely form Br-OBPs from reactions with DOM

(i.e., <0.5 μM at CT value of ∼10−9 M s−1 for Br•/Br2
•−).56,135

As such, HOBr/OBr− is the dominant oxidant to form Br-
OBPs, whereas Cl•/Cl2

•− and HOCl/OCl− can all contribute
to Cl-OBP formation. So limiting HOX/OX− formation in

AOPs is a crucial step in controlling X-OBP formation,
especially for Br-OBPs. The formation of X-OBPs in different
AOPs can vary significantly. For example, H2O2-based AOPs
do not usually form significant concentrations of X-OBPs
because of the low level of both halogen radicals (because of
the reversible reactions between •OH and Cl− and the
reduction by H2O2) and HOX/OX− (because of the reduction
by H2O2).62,135,252,253 In SO4

•−-based AOPs, PMS is more
reactive with background Cl− and Br− than PDS to generate
HOCl/OCl− and HOBr/OBr−, resulting in X-OBP forma-
tion.3,254 For AOPs using chlorine as the activating chemical
(e.g., UV/chlorine), X-OBP is of great concern because of the
DOM reactions with HOX/OX− added or generated from
bromide/iodide oxidation.255 Cl•/Cl2

•− can not only contrib-
ute to Cl-OBP formation but also transform DOM to either
increase or decrease Cl-OBP precursors.56 More information
about oxidation byproduct formation in AOPs can be found in
an excellent review compiled by Ike and his colleagues.87

Notably, despite the difference in the concentrations and
formation mechanisms of X-OBPs in different AOPs, DOM is
the major precursor of X-OBPs. Eliminating DOM concen-
trations is generally beneficial for controlling X-OBPs.

The formation of inorganic byproducts such as chlorite,
chlorate, and bromate is also a concern in AOPs.83,256,257 Being
different from X-OBPs, they are not derived from DOM.
Instead, the quenching of their precursors (e.g., halogen
radicals and HOX/OX−) by DOM and DOM-derived
reducing species (e.g., O2

•−, semiquinone radicals, excited
state of DOM)10,217,258 could significantly reduce the
formation of inorganic byproducts (Figure 6).82,83,257,259,260

For example, DOM inhibits chlorate formation in the Co2+/
PMS AOP by scavenging chlorine radicals and HOCl/OCl−.82

DOM inhibits bromate formation in UV/PDS because of the
elimination of bromine radicals and HOBr/OBr− by O2

•−

formed from UV irradiation of DOM, and the reduction of
bromine radicals by DOM to Br−.260,261 The presence of DOM
also inhibits bromate formation in ozonation or ozone-based
AOPs because of competitive reactions with O3/•OH and the
reactions with the formed HOBr/OBr−.252 However, Br-OBP
formation increases instead.259 Forasmuch, the formation of
both X-OBPs and halogen containing oxyanions should be
considered in AOPs. Integrated processes, such as combination
with membrane filtration, activated carbon adsorption, and ion
exchange, can be desirable to reduce the adverse effects of
these toxic byproducts.
4.3. The Necessity of Toxicity Assessment. Toxicity

studies are highly recommended to evaluate the potential
adverse health effects of treated water and wastewater, which
are missing in majority of the studies. A few studies
investigating the trade-offs between the effectiveness of
AOPs in eliminating TrOCs versus the formation of toxic
transformation products have produced conflicting toxicity
observations. For example, after AOP treatment of Suwannee
River DOM in a UV/chlorine AOP, a Chinese hamster ovary
cell assay showed enhanced cytotoxicity.226 However, a
reduction in toxicity has been reported when UV irradiation
is combined with chlorine.255,262−264 Some studies have
reported the increases in genotoxic activity after UV/O3,
UV/O3/H2O2, O3/H2O2, and UV/H2O2 treatment,235,265−267

while other studies have not.267,268 The differences in toxicity
might be attributable to different water contaminants, the UV
applied (LPUV or MPUV), oxidant dosage, or the bioassays
used in the toxicity tests. In chemico, in vitro, and in vivo assays
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may be applied to target health-relevant end points.269,270 For
halogenated DBPs, the calculation of the sum of potency-
weighted DBP concentrations can be used as an estimate of the
cell cytotoxicity associated with known DBPs.271 Moreover,
establishing linkages between the transformation of specific
functional groups with the changes of toxicological effects can
provide important guidance on optimizing engineering designs.
For example, granular activated carbon adsorption after AOP
treatment effectively reduces toxicity by physically removing
the transformation byproducts (typically carboxylic acids and
aldehydes).19,266,272,273

5. THE WAY FORWARD
5.1. Predicting the Abatement of TrOCs in AOPs.

Mechanistic and machine learning models of TrOC degrada-
tion in AOPs are emerging.274−278 The degradation of TrOCs
in an AOP is governed by the oxidant exposure (eqs 17−19).
Models developed to predict the degradation of TrOCs in
surface water and wastewater effluents show good predictive
power with •OH-based AOPs such as the O3/H2O2 and UV/
H2O2 systems.77,279 A key limitation has been parameterization
of the DOM component of such models, as most require probe
compound experiments to first obtain water-specific oxidant
exposures during the treatment. While in situ probe measure-
ment techniques are improving, most still require off-line
experiments.279−282 For example, the decay of O3 and the •OH
probe compound such as p-chlorobenzoic acid needs to be
measured first to get ∫ [O3]dt and ∫ [•OH]dt values before
using eq 17 to predict the degradation.5,77 The steady-state
concentrations of •OH must also be obtained using p-
chlorobenzoic acid or rhodamine B as a probe compound
before using eq 18.283,284 For AOPs with many types of RS, all
the steady-state RS concentrations are needed (eq 19).
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Few full-scale AOPs applications yet modify operations
based on such models (e.g., digital twins) and rarely determine
oxidant exposure or RS concentrations in their continuous flow
reactors. Digital twins are emerging as viable design and
operational tools for water treatment.285 For AOPs, the major
uncertainty lies in the different DOM characteristics and their
different reactivity with oxidants. The behavior of RS with
ubiquitous inorganic ions such as Cl−, Br−, and CO3

2− is better
understood. Correlating DOM properties with RS may be a
step forward to predicting the impacts of DOM composition
on an AOP. Machine learning methods using fluorescence
excitation−emission data describing the DOM already offers
accurate prediction of the abatement of TrOCs in the
ozonation of drinking water and wastewater effluent.286

Adjusting the oxidant dose and the intensity of illumination
based on water quality promises attractive in energy cost
savings while still achieving treatment goals, but it needs
integrated online monitoring of DOM properties and their
connection with reactivity. Further integration of existing
mechanistic models that predict TrOC degradation pathways

and rate constants accounting for both synergistic and
antagonistic effects is now the frontier for improving AOP
models.274,275,287,288

5.2. Understanding the Fundamental Reaction
Mechanisms of DOM with Reactive Species. There are
fundamental mechanisms in the reactions of DOM compo-
nents that remain unclear. The role of DOM• in AOPs is often
neglected primarily for want of appropriate analytical methods.
Though long-lived DOM radicals such as phenoxyl, alkoxyl,
peroxyl, and percarboxyl radicals are known to have lower
reactivity than RS such as •OH and SO4

•−, they can possibly
outcompete the RS because of their higher concentrations. The
presence of long-lived radicals has been verified using electron
paramagnetic resonance and time-resolved spectroscopy
determinations.51,289 However, methods for quantifying
DOM• levels are not available. There are even no published
methods for measuring the specific PhO•, RO•, or ROO•

concentrations. Additionally, the reactions in the confined
volumes of DOM−TrOCs and catalyst−DOM interactions are
not yet well understood. In heterogenous AOPs the reactions
happen on the catalyst’s surface, in the solid−liquid boundary
layer, or in the bulk solution.290 The role of DOM components
on the surface or in the boundary layer is barely known.
Heterogeneous distribution of 1O2 and •OH on a microscale
during solar irradiation of DOM has been found to accelerate
the degradation of target TrOCs,69 but the radical reaction
chemistry in that microscale environment is not yet well
studied. As such, localized quantification methods for DOM•

and radicals are badly needed.
5.3. Developing AOPs that Exploit DOM. The typical

focus of an AOP is on designing better catalysts that generate
more RS. Exploiting DOM has only rarely been considered.
Insulating target TrOCs from DOM can reduce DOM’s
inhibitory effects. In doing so, rational structural design to
improve selectivity (size-selective properties for example, or
selective surface interactions) is critical.19,291−294 When the
pore sizes of the materials are tailored to separate DOM from
the TrOCs by size-exclusion, the DOM’s impacts on TrOCs
adsorption and oxidation can be minimized. This is how yolk−
shell Co/C nanoscale reactors work.291,292,295 Conjugating
molecularly imprinted materials with photocatalysts can also
improve the efficiency of photocatalytic processes.296 Another
approach to consider is to take advantage of the diversity of
DOM’s properties. It can perhaps provide metal ligands for
complexing oxidants and reductants or serve as an organic
activator for some Fenton-like reactions. Opportunities exist to
make DOM serve to accelerate the degradation of TrOCs in
AOPs. DOM’s quinones and quinone-like moieties are redox-
active, and they can be exploited in reactions to generate RS or
degrade TrOCs.297 A recent study has shown their role in
activating H2O2 to generate •OH and 1O2.194 Another has
demonstrated that they can reduce Fe(III) to Fe(II) to activate
PMS in SO4

•− generation.109,194 DOM is ubiquitous. It should
be exploited to promote TrOC removal.
5.4. Improving Understanding the Formation of

Byproducts and Their Toxicity. AOP development also
needs to attend more to the formation of oxidation byproducts
and to their toxicity. Many halogenated organic byproducts are
regulated in certain jurisdictions, but pharmaceuticals rarely
are.242 Tools such as transient spectroscopy, ultra-high-
resolution mass spectrometry, and three-dimensional NMR
spectroscopy can help to elucidate the relationships between
byproduct formation and DOM transformation at nanosecond
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to microsecond time scales and on the molecular
level.41,56,80,111,138,224,298−300 In terms of toxicity, the com-
monly used effect-directed analysis inevitably causes a loss of
volatile and/or polar components from the samples.301

Reactivity-directed analysis using organic electrophilic mole-
cules may be a better choice for determining the toxicity of
byproducts generated from DOM.81,302 Bioassays employing
bacteria, invertebrates, algae, plants, fish, and different water
compositions should be employed to evaluate the toxicity from
multiple perspectives. A multidimensional understanding of
byproduct formation is required. The mutual relationships
involved in DOM’s transformation, concentrations, the types
of byproducts generated, and their cytotoxicity and genotox-
icity are all important.
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■ ABBREVIATIONS
DOM Dissolved organic matter
SRFA Suwannee River fulvic acid
FAs Fulvic acids
HAs Humic acids
NOM Natural organic matter
AOPs Advanced oxidation processes
TrOCs Trace organic contaminants
•OH Hydroxyl radical
SO4

•− Sulfate radical
O2

•− Superoxide ion
1O2 Singlet oxygen
H2O2 Hydrogen peroxide
PMS Peroxymonosulfate
PDS Peroxydisulfate
HOCl Hypochlorous acid
NH2Cl Monochloramine
NHCl2 Dichloramine
Cl• Chlorine atom
Cl2

•− Dichloride radical anion
RS Reactive species
CO3

•− Carbonate radical
Br• Bromine atom
Br2

•− Dibromide radical anion
EfOM Effluent organic matter
3DOM* Triplet excited state of DOM
DOM• DOM radicals
[RS]ss Steady-state concentration of reactive species
r f

RS
Generation rate of RS

kd
RS

Consumption rate of RS
SUVA254 The specific UV absorbance at 254 nm
ε254 Molar absorptivity value at 254 nm
AC Activating chemicals
f DOM DOM’s relative contribution to radical scavenging
F The attenuation of light absorption by DOM

competition
LPUV Low pressure UV
MPUV Medium pressure UV
k•OH,DOM The second-order reaction rate constant of •OH

with DOM
kSO4•−,DOM The second-order reaction rate constant of SO4

•−

with DOM
kCl•,DOM The second-order reaction rate constant of Cl•

with DOM
kCl2•−,DOM The second-order reaction rate constant of Cl2

•−

with DOM
kBr•,DOM The second-order reaction rate constant of Br•

with DOM
kBr2•−,DOM The second-order reaction rate constant of Br2

•−

with DOM
kCO3•−,DOM The second-order reaction rate constant of

CO3
•− with DOM
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E2/E3 The absorbance at 254 nm divided by the
absorbance at 365 nm

PAHs Polycyclic aromatic hydrocarbons
PFAS Perfluorooctanesulfonate
P•+ Intermediate radical cation
P(−H)

• Neutral intermediate radical
Pox Oxidation products of intermediate radical
DOMao Antioxidants in the DOM
Trp•+ Tryptophan radical cation
DMABN•+ 4-(dimethylamino) benzonitrile radical cation
ADN(−H)

• Neutral adenine radical
SRNOM Suwannee River NOM
PhO• Phenoxyl radicals
RO• Alkoxyl radicals
ROO• Peroxyl radicals
SQ•− Semiquinone radicals
NMR Nuclear magnetic resonance
LMWCs Low molecular weight carbonyls
X-OBPs Halogenated organic byproducts
HOX/OX− Hypohalous acid/hypohalite
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